

Crab- cavities, SPS-BA6 installation & consolidation plans

G. Vandoni

8th HL-LHC Collaboration Meeting

Crab- cavities, SPS-BA6 installation & consolidation plans

E.Metral's webpage

XVI) Working group to study the feasibility of installing a Crab Cavity in the SPS: <u>CCinS</u>

2009

G. Vandoni

Nicolas Delruelle (Cryogenics) - TE/CRG

Nicolas Gilbert (Space and integration) - EN/MEF

Elias Metral (Chairman, beam dynamics issues and SPS availability) - BE/ABP

Joachim Tuckmantel (Crab cavity expert and RF) - BE/RF

Giovanna Vandoni (Vacuum) - TE/VSC

Jorg Wenninger (Machine protection) - BE/OP

CERN

8th HL-LHC Collaboration Meeting

Frank Zimmermann (Crab cavity expert, possible measurements and linkman with KEK) - BE/ABP

OUTLINE

INSTALLATION

NON-CONFORMITIES & CONSOLIDATION

OUTLOOK to LHC

LAYOUT

Surface & Underground areas SPS BA6

Test stand

Table Movement

Fast extraction to LHC

Articulated Y-shaped vacuum chambers

RF power transmission lines, rotating coupling

Service Cryomodule Box

Motorized transfer table 510mm 4μm Fully remote handling & control

Bearing CM+SB, RF power circulators and loads, vacuum chambers supports

NEW INFRASTRUCTURE

CIVIL ENGINEERING

- Faraday cage
- Cryo-compressor
- Oil-removal skid

Concrete slabs

- Gas and liquid tanks
- New transformer

New overhead rails maximal charge 4 tons, in tunnel and technical alcove

HANDLING

NEW INFRASTRUCTURE

ELECTRICAL DISTRIBUTION

New, 2MVA transformer, 18/0.4 kV connected to SPS stable loop.

UPS

Switchboards

Network	Requested load
General services	1100 kVA
UPS	17kW

Secured	2kW
---------	-----

FARADAY CAGE

Attenuation of 80 dB minimum at both 400 MHz and 1 GHz

Single power line with filtering capability at 40A Single patch panel, feedthroughs 3 GHz, 50Ω

Phonic insulation, fire detection, controlled ventilation

Raw and demineralized water systems modification &recommissioning

INTERLOCKS

Туре	Why	What
Personnel safety	Radiation (X-rays) ODH and cryo hazard mechanical hazard	Access versus RF Power to cavities Table movement/ LHe level
Machine protection	Aperture Protection SPS and cavities	Beam & extraction versus table position, table movement, vacuum sector valves SIS: set of parameters, to define
Equipment protection	Protection of cavities and their ancillaries	RF Power versus Vacuum (beam/ insulation) Cryogenics (cryo OK given manually+ interlocks) Beam versus HOM power

INTERLOCKS

Туре	Why			What
Personnel safety	Radiation ODH and mechanic	cryo hazard		Access versus RF Power to cavities Table movement/ LHe level
Machine protection	RF Power cannot be switched on if the SPS is NOT in Safe Access mode (closed mode)			
Equipment protection	Choice done for simplicity: RF conditioning and LLRF preparation in parking position, during beam time			
	→ Needs to be over-run or modified (interlock signal to closing off			
	RP doors, or interlock with RP dose at these doors) to allow for tests during LS2			

SAFETY EQUIPMENT

Extended layout of Oxygen Deficiency (ODH) detectors and flashing beacons, triggered tunnel evacuation up to midarc on both sides

INSTALLATION

CERN machines schedule

YETS 2016 EYETS 2017 YETS

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

Cavities & cryomodule

SPS works for test-stand

PLANNING

Work allowed only in 3 slots of 8 - 12 weeks over 2.5 yrs

YETS16: Uncabling/ scans

EYETS17: Infrastructure

YETS18: Largest, delicate equipment in shortest time

PLANNING

Electricity – coping with coactivity

CABLING

EN/EL/FC new cables and fibers		Deadline for use	
BPM	C.Boccard	16/2	
Transfer Table	K.Artoos	12/1	end of week2
Vacuum	F.Daligault	29/1	Week 5
ODH	N.Broca	7/2	week 6
Fire safety	Miriam Munoz	7/2	
Mechanical instrumentation of CM	M.Guinchard	20/2	Week 8
RF Powering	F.Killing	9/2	week 6
BLM	D.Vaxelaire	16/2	
Cryogenics (to VB#2)	C.Fluder	24/1	week 4
Faraday cage LLRF	P.Baudrenghien	31/1	week 5

POWERING

EN/EL/EIC Electrical distribution cabling and connections		Deadline for use	
Energization of transformer	G.Velazquez	15/1	week2
Cryogenics	C.Fluder	22/1	week3
Transfer table	K.Artoos	12/1	end week2
Survey rack	M.Sosin	22/1	Week 4
IOTs	F.Killing	9/2	week6
Faraday cage equipment	P.Baudrenghien	31/1	week5
ODH rack	N.Broca	5/2	Week 6

Staging of works with deadline

Arbitration on necessities: some cables left out

Priority on the field to cabling team

Cables prepared for the powering and control of the transfer table, right before the table installation

TA6/ shaft Cabling/ El. Distribution Tunnel

BA6

Tunnel

CRYOGENICS TA6/shaft Tunnel BA6

Cryomodule/RF

Transfer Table RF equipment **CRYOMODULE** Vacuum

EN/HE

AVS

AMS

EN/ACE/SU

EN/ACE/SU

4.14

4.18

4 10

1 5.1

transport top B and instal

assemble and align top B

complete functionality test

Install cable cha

connection to local rack and test in factory mode

laser tracker measurement for final validation

installation of controllers in surface rack, cable to tunnel cable

INSTALLATION

Tight follow-up and coordination on the field

Time-lapse camera recording

PLANNING ...vs REALITY

YETS 2017-2018 Statistics

Other

CONSOLIDATION & NON-CONFORMITIES

Main non-conformities

mechanics

Cryomodule misaligned by $400\mu m$

VB2 and SB mutual distance not according to integration

Water pressure too high, on RF loads and He pumps

Helium leak on line between CB and VB1

Cryo-lines versus insulation vacuum status, procedure not indicated on items

Cryo danger zone not marked

Mechanical instrumentation cables missing

Vacuum interlocks to cryo are not hard cabled

VVS interlock to table position is not hard cabled

Cable's hard protection missing

ODH signals impacted by occasional noise, reach pre-alarm

Brakes pulled on transfer table motors

Safety signage

cabling

solved in TS

Cryomodule misalignment

No impact on in-beam performance, correction by orbit bump

Including contraction corrections based on SM18 BUNKER measuremements:

Including contraction corrections based on theoretical calculations:

- Insufficient data on effect of vacuum cycling
- No FSI observation during initial alignment
- Successive cycles on insulation vacuum

Layout for leak tests

COMMON INSULATION VACUUM SB and CM

Necessity to maintain insulation vacuum when internal cryogenic circuits are pumped, to avoid stress from vacuum pull on lines.

Distance ValveBox2 to ServiceBox

Comparison between foreseen (red) and measured (black) positions & distances.

	measure	model	Δ
SB1-VB2	2699	2586	113
SBP1-VBP1	2080	1975	105
SBP2-VBP2	2032	1924	108

Flexibles cut and re-installed for stress minimization in parking position

Works in LS2

WORKS with Access

- Repair of VB2 to SB distance non-conformity
- Repair of helium leak on flexible line Cold-Box to VB1
- Consolidation of Safety Information signage
- Missing cables
- Alignment correction

Cooldown and RF Power testing, reaching nominal voltage without beam

SAFETY REQUIREMENTS

Modify/remove SPS Safe Access interlock on RF Power Area closure to passage, transport etc

TECHNICAL REQUIREMENTS

Services availability: electricity, water...

An OUTLOOK to LHC

HLLHC:

SPS test-stand mirrors crab-system architecture of HL-LHC

- Infrastructure / interfaces :
 integration,
 installation,
 interlocks, controls, cables
- Technical issues being tackled and solved: lessons learnt for LHC

CONCLUSIONS

Fully functional, unique test stand for superconducting RF cavities in high energy/ high intensity proton beam

Main features:

- Cryogenics for 7g/s liquefaction, 3.5g/s at 2K
- Moving table 510mm range for in-beam/ parking
- Low SEY Y-shape vacuum chambers
- 80kW IOT RF amplifiers
- Beam instrumentation
- Overhead transport rails

Consolidation and non-conformity reduction / Modification for operation during LS2

All involved teams have spared no effort, humbly and keenly, for the success of the SPS test stand

Integration, Safety & SPS Coordination, Safety infrastructure, Civil engineering, Electrical distribution, Cabling, Infrastructure support, Transport, Transfer Table team, RF, Cryogenics, Vacuum, Cryomodule mechanical engineering, Survey, Beam instrumentation, Machine protection...

