Local Powering of the Corrector Package in the Inner Triplet A Ballarino, F Menendez Camara, F Rodriguez Mateos, S Yammine With many valuable contributions from E. Todesco, D. Ramos, V. Parma, H. Prin, L. Bottura, M. Martino, S. Maridor, D. Wollmann, S. Claudet, P. Fessia, J. C. Guillaume. 8th HL-LHC Collaboration Meeting, CERN, 16th October 2018 #### Content - 1. Baseline and options - 2. Reasons for the ECR - 3. Change impacts to the different WPs - 4. Summary of TCC and follow up The HL-LHC Cold Powering baseline envisaged powering the Inner Triplet Corrector Package (CP) circuits rated at 200 A and below via the MgB₂ Superconducting Link and associated cryo-electrical equipment. An ECR presented to HL-LHC TCC on September 20 2018 proposes to remove the cold powering equipment related to these circuits replacing them by warm cabling from the converters location to LHC-type conduction-cooled current leads integrated in the CP magnet cryostat. # Reasons for the ECR (WP6a) - Simplification of the HL-LHC Cold Powering - Adopting for HL-LHC the same strategy as for LHC, where low-current (60 A and 120 A) corrector circuits are fed via conduction-cooled current leads integrated in the magnet cryostats The **main advantages** of the proposed change with respect to the present Cold Powering baseline are the following: - **Elimination of the about 100 m long electrically insulated MgB₂ cables**, rated for DC currents of 200 A or 120 A, housed inside the superconducting link (18 cables per Triplet); - **Elimination of the cabling process related** to the assembly of the 200 A/120 A MgB_2 cables in the final MgB_2 cable assembly developed for feeding the magnets in the Triplets; - Elimination of the 200 A/120 A gas cooled High Temperature Superconducting (HTS) current leads located in the UR replaced by conduction-cooled current leads; - **Elimination of the control valves and warm recovery lines** associated with gas-cooled current leads; - Elimination of the protection equipment needed for the superconducting part of the circuit, i.e. for the MgB₂ cables and for the HTS part of the leads (each requiring dedicated protection with different voltage thresholds); - **Reduction of the number of the electrical splices in the Cold Powering System**, i.e. elimination per Triplet- of eighteen HTS to MgB₂ splices in the DFH cryostat and eighteen MgB₂ to Nb-Ti splices in the DFX cryostat; - Simplification of DFH cryostat by reduction of number of HTS cables routed out of it and number of splices it shall host. # "Local" powering of the corrector circuits can be achieved by - either leaving the concerned power converters in the present baseline location, i.e. in the UR (case A), - or by re-locating the power converters in the LHC's UL14, UL16, UL557 and USC55 (case B). #### Case A • add new power cables trays routing in the ULs , and use the vertical shaft # Case B (P1) ### **TECHNICAL EVALUATION PER WP** | Work-
package | CASE A | CASE B | |------------------|--|--| | WP3 | Saving the work associated with the interconnection of the Nb-Ti bus - in the line N - in the LHC tunnel Reduction of the number of cool-downs and reconnections work in different test configurations - reduction by a factor of three with respect to the present baseline Integration of the conduction-cooled leads in the CP cryostat can be achieved | | | WP6b | The cross-section of the cables needs to be chosen to fit available voltage compliance | UL14 and UL16 → Power Converters radiation tolerant 120A and 200A Power Converters to be controlled by FGCLite. Two configurations cannot co-exist in the same Gateway. Access! | | WP7 | Remove the need of dedicated quench detection equipment MQSXF monitoring and protection of the conduction cooled leads will be ensured by two uQDS units | MQSXF protection equipment to be placed next to the PCs. Adding an extra complexity in the de-installation and installation planning Additional signal cables (PCs, EE) | | WP9 | Elimination of the control valves and associated thermometers and piping needed for operation of gas cooled current leads Operational cost would give an increase of cost over 10 years | | | WP15 | Technical challenge in the removal of the heat generated from the copper cables in the vertical sections Addition of an extra element in the planning | 3 different integrations and the preparation of the installation in 4 different areas leading to an increase in complexity in integration and installation Adding extra complexity in the de-installation and installation planning | | WP17 | DC cables power dissipation in the vertical shaft to be verified Cross section of cables to be increased | Partial re-use of existing infrastructure and cable trays | ## Summary of TCC and follow up - To decouple the decision on the sc link from location of power converters - Approve the changes in the link - Study on going to keep converters in UR - Only Option A has no implication on radiation issues and thereby fits to the HL-LHC upgrade goal of providing accessibility for the new hardware. - WP15 is verifying with Civil Engineering the possibility of displacing the radiation shield to the bottom of the shaft - First indications from WP15 say that there is no issue concerning the cooling/ventilation in the shaft for case A # Thanks Questions?