General considerations for the crowbar design of the HL-LHC circuits

Hugues THIESEN (CERN)
On behalf of WP6B Warm Powering

8th HL-LHC Collaboration Meeting – Geneva - 15-18 October 2018
Contents

- Power converter crowbar
- Crowbar for superconducting circuits
- Crowbar for HL-LHC circuits
- Conclusion
Power converter crowbar
The main function of the crowbar is to protect the electrical circuit (PC, DC cables and magnet) by giving a path for current in case of PC trip.
Power converter crowbar

- Different types of crowbar
 - 1Q power converter => Diode
Power converter crowbar

- Different types of crowbar
 - 1Q power converter => Diode
 - 2Q (bipolar in V) power converter => Thyristor
Power converter crowbar

- Different types of crowbar
 - 1Q power converter => Diode
 - 2Q (bipolar in V) power converter => Thyristor
 - 4Q power converter => 2 thyristors back2back
Power converter crowbar

- The main parameters for the crowbar design:
 - V_{peak}, I_{peak} and P_{peak} are defined by the power converter
 - Energy and current decay (τ) are defined by the magnet
 - Crowbar has to be natural air cooled (in case of water fault)
 - Auto-maintain (not need of external energy to maintain the crowbar ON)
The main parameters for the crowbar design:

- V_{peak}, I_{peak} and P_{peak} are defined by the power

V_{max} defined by the rating of the PC

I_{max} defined by the rating of the PC

$\tau = L/R$ defined by the load (magnet + DC cables)

$E < E_{\text{magnet}}$
Crowbar for superconducting circuits
Crowbar for superconducting circuits

- Superconducting circuits can have
 - High current (>1 kA) and high inductance (>1 H)
 - Low resistance (<10 mΩ, only DC cables)
- main part of the magnet energy is dissipated in the crowbar

Series resistor can be added to reduce the constraints (E and τ) for the crowbar (diodes or thyristors)
Crowbar for superconducting circuits

- Crowbar resistor
 - The *series resistor* absorbs a part of magnet energy and reduces the *time constant* of the discharge (positive point for the magnet)
Crowbar for superconducting circuits

- Crowbar resistor
 - Example: Crowbar resistor is used for the LHC 120A power converters.

Circuit	R_{cb} [mR]	V_{cb} [V]	V_{pc} [V]
120A | 80 | 9.6 | 10

$V_{\text{cb}} < V_{\text{pc}}$
Crowbar for superconducting circuits

- Crowbar resistor
 - Example: Crowbar resistor is used for the LHC 120A power converters.

```
\begin{array}{|c|c|c|c|}
\hline
\text{Circuit} & \text{R\textsubscript{cb} [mR]} & \text{V\textsubscript{cb} [V]} & \text{V\textsubscript{pc} [V]} \\
\hline
120A & 80 & 9.6 & 10 \\
\hline
\end{array}
```

Can we go above nominal voltage of the power converter?
Crowbar for superconducting circuits

- Crowbar resistor
 - The [600A/10V] PCs power superconducting circuits with huge inductance and huge time constant (e.g. RU circuits with 4.8 H and 1000 s)
 - The crowbar resistor is 50 mΩ and the voltage across the PC during the discharge is 30V.
 - Constraints for the power converter (over voltage)
 - Constraints for the superconducting circuit (di/dt > nominal di/dt)
 - Constraints for the QDS (protection by global voltage)
Crowbar for superconducting circuits

- SC busbar can be protected by the Crowbar?
 - Risk to bypass the crowbar in case of PC short circuit
 - DC contactor added in series with the PC to increase the safety level of the discharge system
Crowbar for HL-LHC circuits
Crowbar for HL-LHC circuits

- HL-LHC circuits
Crowbar for HL-LHC circuits

- HL-LHC circuits

11T Dipole - Right and Left of Point 7

Legend:
- QP: Quench Protection
- QH: Quench Heaters
- EE: Energy Extraction System
- PC: Power Converter
- OC: Orbit Correctors
- n: Number of Circuits per IP Side
- ST HO: Superfluctric High Order
- n: Current Leads Connection
Crowbar for HL-LHC circuits

HL-LHC circuits

<table>
<thead>
<tr>
<th>Circuit</th>
<th>I<sub>pc</sub> [A]</th>
<th>V<sub>pc</sub> [V]</th>
<th>Quadrant</th>
<th>Magnet</th>
<th>Crowbar</th>
<th>R<sub>cb</sub> [mΩ]</th>
<th>V<sub>cb</sub> [V]</th>
<th>Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>120A</td>
<td>120</td>
<td>10</td>
<td>4Q</td>
<td>CP</td>
<td>Thy_B2B</td>
<td>80</td>
<td>9.6</td>
<td>LHC</td>
</tr>
<tr>
<td>200A</td>
<td>200</td>
<td>10</td>
<td>4Q</td>
<td>CP</td>
<td>Thy_B2B</td>
<td>50</td>
<td>10</td>
<td>LHC R2E</td>
</tr>
<tr>
<td>600A</td>
<td>600</td>
<td>10</td>
<td>4Q</td>
<td>OC(D2)</td>
<td>Thy_B2B</td>
<td>50</td>
<td>30</td>
<td>LHC R2E</td>
</tr>
<tr>
<td>2kA</td>
<td>2'000</td>
<td>10</td>
<td>4Q</td>
<td>OC(Q1toQ3)</td>
<td>Thy_B2B</td>
<td>7</td>
<td>14</td>
<td>New</td>
</tr>
<tr>
<td>13kA</td>
<td>13’000</td>
<td>8</td>
<td>1Q</td>
<td>D1/D2</td>
<td>Diode</td>
<td>-</td>
<td>0</td>
<td>LHC R2E</td>
</tr>
<tr>
<td>IT Main</td>
<td>18’000</td>
<td>10</td>
<td>2Q</td>
<td>Q1toQ3</td>
<td>Thy</td>
<td>0.5</td>
<td>9</td>
<td>New</td>
</tr>
<tr>
<td>IT Trim</td>
<td>2’000</td>
<td>10</td>
<td>4Q</td>
<td>Q1/Q3</td>
<td>Thy_B2B</td>
<td>7</td>
<td>14</td>
<td>New</td>
</tr>
<tr>
<td>IT kmod</td>
<td>35</td>
<td>8</td>
<td>4Q</td>
<td>Q1a</td>
<td>Thy_B2B</td>
<td>??</td>
<td>??</td>
<td>LHC</td>
</tr>
</tbody>
</table>
Crowbar for HL-LHC circuits

- 2kA power converter
 - Redundant power converter with 6 sub-PC in parallel
Crowbar for HL-LHC circuits

- 2kA power converter
 - 2 cases to take in account to design the 2 kA crowbar resistor
 - Power converters for OC(Q1toQ3)
 - Power converters for IT TRIM

<table>
<thead>
<tr>
<th>PC</th>
<th>Over Current [A]</th>
<th>R_cb [mΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC(Q1toQ3)</td>
<td>2’000</td>
<td>< 25</td>
</tr>
<tr>
<td>TRIM(Q1&Q3)</td>
<td>7’000</td>
<td>< 7</td>
</tr>
</tbody>
</table>
Crowbar for HL-LHC circuits

- 2kA power converter
 - 2 cases to take in account to design the 2 kA crowbar resistor
 - Power converters for OC(Q1toQ3)
 - Power converters for IT TRIM

<table>
<thead>
<tr>
<th>PC</th>
<th>Over Current [A]</th>
<th>R_cb [mΩ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC(Q1toQ3)</td>
<td>2'000</td>
<td>< 25</td>
</tr>
<tr>
<td>TRIM(Q1&Q3)</td>
<td>7'000</td>
<td>< 7</td>
</tr>
</tbody>
</table>
Crowbar for HL-LHC circuits

- 2kA power converter
 - If the crowbar is critical for the protection of the SC busbar then 400A fuses can be added in series with the DC contactor of each sub converter
Crowbar for HL-LHC circuits

- 18kA power converter
 - Huge energy stored in the circuit (Q1, Q2a, Q2b and Q3)
 - No DC cables
 - Time constant > 500 s
 - Full magnet energy dissipated in the crowbar
Crowbar for HL-LHC circuits

- 18kA power converter
 - N sub-converters with M sub-module in parallel
 - Diodes of the output stage in parallel with the crowbar

\[V_{\text{cb}} < V_{\text{bat}} \text{ (24 V)} \]
\[\tau > 250 \text{ s} \]
Crowbar for HL-LHC circuits

- **18kA power converter**
 - If $V_{cb} > 24$ V is requested then external 18 kA EE system is mandatory
Conclusion
Conclusion

- The function of the crowbar is to protect electrical circuit (PC, DC cables and magnet) by giving a path for current when the power converter is OFF (normal or fault off).

- Resistor in series with the crowbar can be added to reduce the time constant of the discharge but in this case the V_{cb} shall be close to the V_{pc}

- For high discharge voltage, EE system must be used.
Thank you for your attention…