

General considerations for the crowbar design of the HL-LHC circuits

Hugues THIESEN (CERN)
On behalf of WP6B Warm Powering

8th HL-LHC Collaboration Meeting – Geneva - 15-18 October 2018

Contents

- Power converter crowbar
- Crowbar for superconducting circuits
- Crowbar for HL-LHC circuits
- Conclusion

 The main function of the crowbar is to protect the electrical circuit (PC, DC cables and magnet) by giving a path for current in case of PC trip

- Different types of crowbar
 - 1Q power converter => Diode

- Different types of crowbar
 - 1Q power converter => Diode
 - 2Q (bipolar in V) power converter => Thyristor

- Different types of crowbar
 - 1Q power converter => Diode
 - 2Q (bipolar in V) power converter => Thyristor
 - 4Q power converter => 2 thyristors back2back

- The main parameters for the crowbar design:
 - V_{peak}, I_{peak} and P_{peak} are defined by the power converter
 - Energy and current decay (τ) are defined by the magnet
 - Crowbar has to be natural air cooled (in case of water fault)
 - Auto-maintain (not need of external energy to maintain the crowbar ON)

- The main parameters for the crowbar design:
 - Vpeak, Ipeak and Ppeak are defined by the power

- Superconducting circuits can have
 - High current (>1 kA) and high inductance (>1 H)
 - Low resistance (<10 m Ω , only DC cables)
- main part of the magnet energy is dissipated in the crowbar

Series resistor can be added to reduce the constraints (E and τ) for the crowbar (diodes or thyristors)

- Crowbar resistor
 - The series resistor absorbs a part of magnet energy and reduces the time constant of the discharge (positive point for the magnet)

- Crowbar resistor
 - Example: Crowbar resistor is used for the LHC 120A power converters.

- Crowbar resistor
 - Example: Crowbar resistor is used for the LHC 120A power converters.

Can we go above nominal voltage of the power converter?

- Crowbar resistor
 - The [600A/10V] PCs power superconducting circuits with huge inductance and huge time constant (eg. RU circuits with 4.8 H and 1000 s)
 - The crowbar resistor is $50 \text{ m}\Omega$ and the voltage across the PC during the discharge is 30V.
 - Constraints for the power converter (over voltage)
 - Constraints for the superconducting circuit (di/dt > nominal di/dt)
 - Constraints for the QDS (protection by global voltage)

- SC busbar can be protected by the Crowbar?
 - Risk to bypass the crowbar in case of PC short circuit
 - DC contactor added in series with the PC to increase the safety level of the discharge system

HL-LHC circuits

Circuits Layout Version 2.3

HL-LHC circuits

HL-LHC circuits

Circuit	I_pc [A]	V_pc [V]	Quadrant	Magnet	Crowbar	R_cb [mΩ]	V_cb [V]	Based on
120A	120	10	4Q	СР	Thy_B2B	80	9.6	LHC
200A	200	10	4Q	СР	Thy_B2B	50	10	LHC R2E
600A	600	10	4Q	OC(D2)	Thy_B2B	50	30	LHC R2E
2kA	2'000	10	4Q	OC(Q1toQ3)	Thy_B2B	7	14	New
13kA	13'000	8	1Q	D1/D2	Diode	-	0	LHC R2E
IT Main	18'000	10	2Q	Q1toQ3	Thy	0.5	9	New
IT Trim	2'000	10	4Q	Q1/Q3	Thy_B2B	7	14	New
IT kmod	35	8	4Q	Q1a	Thy_B2B	??	??	LHC

- 2kA power converter
 - Redundant power converter with 6 sub-PC in parallel

- 2kA power converter
 - 2 cases to take in account to design the 2 kA crowbar resistor
 - Power converters for OC(Q1toQ3)
 - Power converters tor IT TRIM

PC	Over Current [A]	R_cb [m Ω]
OC(Q1toQ3)	2'000	< 25
TRIM(Q1&Q3)	7'000	< 7

- 2kA power converter
 - 2 cases to take in account to design the 2 kA crowbar resistor
 - Power converters for OC(Q1toQ3)
 - Power converters tor IT TRIM

- 2kA power converter
 - If the crowbar is critical for the protection of the SC busbar then 400A fuses can be added in series with the DC contactor of each sub converter

- 18kA power converter
 - Huge energy stored in the circuit (Q1, Q2a, Q2b and Q3
 - No DC cables
 - Time constant > 500 s
 - Full magnet energy dissipated in the crowbar

- 18kA power converter
 - N sub-converters with M sub-module in parallel
 - Diodes of the output stage in parallel with the crowbar

- 18kA power converter
 - If V_cb > 24 V is requested then external 18 kA EE system is mandatory

Conclusion

Conclusion

- The function of the crowbar is to protect electrical circuit (PC, DC cables and magnet) by giving a path for current when the power converter is OFF (normal or fault off)
- Resistor in series with the crowbar can be added to reduce the time constant of the discharge but in this case the V_cb shall be close to the V_pc
- For high discharge voltage, EE system must be used

Thank you for your attention...

