

Status of the observations on flux jumps on Nb3Sn magnets

Lucio Fiscarelli

8th HL-LHC Collaboration Meeting CERN, 17/10/2018

Flux jumps on superconducting magnets

Experimental observations

- Spikes on the voltage measured across the magnet leads or at the terminals of a single coil
- Bucked signals difference of signals from two or more coils show them more clearly
- Specific signature, different from mechanical vibrations or from power-converter noise

Flux jumps on the differential voltage

MQXFS (1.5 m)

MBH 11 T (1.8 m and 5 m)

Similar behavior on Nb₃Sn magnets tested at CERN to date

- Amplitude <150 mV
- Mainly at low or intermediate field
- From these data we see same amplitude on MBH full-length proto

Effects of flux jumps on the magnetic field

Flux jumps

- fast events (>> 1 Hz)
- occur during ramps
- mainly at low or intermediate field levels

How can we evaluate their effect on the field?

1) Precise measurement of the current

assumption that changes on the current will have a proportional effect on the field

2) Fixed coils

- large bandwidth (~1 kHz)
- relative measurement (change of field)
- precise on short time intervals (<1 s)

3) Rotating coils are not the best option

- provide absolute field and harmonics
- best accuracy (~10⁻⁵)
- limited bandwidth (~ 1 Hz)

Measurement of current and flux MQXFS3c

- Ramp at 50 A/s followed by a CLIQ discharge
- Current measured at 50 Hz (given by the FGC)
- Flux measured via a fixed coil at 7.5 kHz
- Absolute timestamp for synchronization

Measurement of the current MQXFS3c

Measurement of the flux

MQXFS3c

There is "noise" on the measured flux

- with amplitude ~1*10-4
- can be related to the flux jumps measured on the voltage

Comparison current and flux MQXFS3c

During ramps, in the field range where the flux jumps have maximum amplitude, we measure a "noise" with amplitude ~1*10⁻⁴ on both current and field.

Measurement with rotating coils MQXFS5

- Sequence of ramps (at 15 A/s) and plateaus (120 s)
- Current measured at 1 Hz (down sampling of the reading at 50 Hz)
- Field measured at 1 Hz (rotation speed of the rotating coil)

Measurement with rotating coils MQXFS5

During plateaus, at field levels in the range where the flux jumps have maximum amplitude, we see noise on the measured field with amplitude <1*10⁻⁴ (limited by measurement precision).

Measurement with rotating coils MQXFS5

During plateaus at nominal field, the noise on the field has amplitude <1*10⁻⁴ (limited by measurement precision).

Conclusions

- Flux jumps are visible on the (differential) voltage of all Nb₃Sn magnets tested to date at CERN
 - Still little experience on "long" magnets
- It seems that the current could be affected
 - This must be checked in respect of
 - control loop of the converter
 - inductance of the circuit
 - To date we have observed effects ~1*10-4 during ramps
- When current is affected a proportional effect is visible on the field
- No effects during plateaus

