Effects of flux jumps on emittance blow-up

Unstable behaviour shown by all type II superconductors when subjected to a magnetic field.

We have only **very preliminary measurements*** that show:

- Flux jumps happen only during the early ramp (up to around 50% energy).
 - Simulate injection and middle of the ramp (3725 GeV with 1m optics).
- Measurements show about 30ppm of rated intensity.
 - This 30 ppm intensity will be assumed in this study.

The very preliminary measurements* also show:

- Time scale of a flux jump seems to be "few tens of ms".
 - Between 10 and 60ms will be taken in to account.
- It is unclear if the effect will show up at circuit or magnet level.
 - Simulate both cases: jumps in the circuit and jumps in individual magnets.

Flux jumps kick: Effect of dipolar component

- The flux jump will appear like a fast error in the triplet field.
- Dipolar kicks will be applied to the beam via feeddown due to the crossing angles.
- The effect of the kick on the emittance if $\epsilon_f = \epsilon_0 + \Delta \epsilon$:

$$\epsilon_f = \epsilon_0 + \beta_Q (\Delta k l \cdot x_{co})^2$$

• This is the effect taken into account in the study.

Before kickAfter kick

Flux jumps kick: Effect of quadrupolar component

- The flux jump will appear like a fast error in the triplet field.
- The quadrupolar kick will also disturb the shape of the beam phase space.
- The effect on the emittance is:

$$\epsilon_f \approx \epsilon_0 + \frac{3\epsilon_o (\beta_Q \Delta k l)^2}{4} + O(\Delta k^4)$$

Small compared with dipolar kick -> ignored in this study.

- Assumed a jump of $30\cdot 10^{-6}$ in the field of the IR magnets relative to nominal.
- Used MAD-X to compute a Twiss of the IR with the flux jumps applied computed emittance as:

$$\gamma(s)y^{2} + 2\alpha yy' + \beta(s)y'^{2} = \epsilon$$
$$\epsilon_{N} = \epsilon \gamma_{rel}$$

• Then used the nominal emittance of HL-LHC at injection $\epsilon_{HLLHC}=1.7\mu m$ to compute the kick in σ :

$$k_{\sigma} = \sqrt{\frac{\Delta \epsilon_{N}}{\epsilon_{HLLHC}}}$$

- Simulations made magnet-by-magnet and circuit-by-circuit.
- Studied only IP1 (identical to IP5 with horizontal crossing)

- For 0.45TeV and injection optics.
- 30 ppm intensity.

- For 3.2TeV and 1m optics.
- 30 ppm intensity.

Flux jumps kick in the 11 tesla dipoles

- 4 additional (2 per beam) dipoles with Nb_3Sn technology
- The highest horizontal β -function in their region is small (about 30m)
- The 1-turn kick of these dipoles is $0.7\cdot 10^{-3}\sigma$ -> Negligible compared with the triplet quadrupoles

- Assuming all quadrupoles are equally likely to have a flux jump.
- If the $30 \cdot 10^{-6}$ kick develops over N turns assuming a linear increase starting at t:

- Plotting only 1 every 10 turns.
- The kick develops during "few tens of ms", here from 10 to 60:

- Assuming all 12 quadrupoles are equally likely to have a flux jump.
- The total number of individual (with duration in the worst case of the 10 to 60ms range) $30\cdot 10^{-6}$ kicks per individual quadrupole to get an 1% emittance growth would be:

	Number of jumps per magnet
Magnets Inj.	439
Circuits Inj.	205
Magnets 3.7 TeV	60
Circuits 3.7 TeV	28

This number of kicks in all IP1 and IP5 triplet quads would therefore cause an 1% luminosity loss

Flux jumps simulations -> UPDATED FLUX JUMP STRENGTH TO 100 PPM

- Assuming all 12 quadrupoles are equally likely to have a flux jump.
- More recent measurements show a stronger flux jump of about $100 \cdot 10^{-6}$ ppm.
- The total number of individual (with duration in the worst case of the 10 to 60ms range) $100\cdot10^{-6}$ kicks per individual quadrupole to get an 1% emittance growth would be:

	Number of jumps per magnet
Magnets Inj.	131
Circuits Inj.	61
Magnets 3.7 TeV	18
Circuits 3.7 TeV	8
11T dipole 3.7TeV	337

• This number of kicks in all IP1 and IP5 triplet quads would therefore cause an 1% luminosity loss

- This presentation is based on very preliminary measurement.
- Assuming jumps of 100 ppm that affect the whole triplet in the middle of the ramp of around ~110 turns length (10ms) -> 8 individual flux jumps per quadrupole will cause a 1% luminosity loss.
- At injection flux jumps cause smaller emittance growth.
- The kick from the 11 tesla dipoles in IR7 is negligible.

• In quadrupoles the flux jump will appear as a fast change in the strength of the quadrupole $\Delta k l$.

If ϵ_0 is the initial emittance and we start with a distribution $\Psi_0(J)$:

$$\Psi_0(J) = \frac{1}{2\pi\epsilon_0} \exp\left(-\frac{J}{\epsilon_0}\right) \text{ Transforming J for a quadrupolar kicks: } J \to \frac{1}{2\beta} \left[x^2 + \left(p + \beta_Q \Delta k l x\right)^2\right] \approx J[1 - \beta_Q \Delta k l \sin(2\phi)]$$

The distribution after the kick:

$$\Psi_1(J,\phi) = \frac{1}{2\pi\epsilon_0} \exp\left(-\frac{J[1-\beta_Q \Delta k l sin(2\phi)]}{\epsilon_0}\right) \longrightarrow$$

Averaging the action:

$$< J > = \int_0^\infty \int_0^{2\pi} J \Psi_1(J, \phi) dJ d\phi = \frac{\epsilon_0}{\left(1 - \left(\beta_Q \Delta k l\right)^2\right)^{\frac{3}{2}}} \approx \epsilon_0 + \frac{3\epsilon_o \left(\beta_Q \Delta k l\right)^2}{4} + O(\Delta k^4)$$

Looks small compared with dipolar kick -> ignored in this study.

