Evaluation of RF pickup antennas for crab cavity (DQW and RFD) LHC-series

Silvia Verdú-Andrés (BNL), Rama Calaga (CERN)
Some background

- **Each crab cavity** equipped with **one RF pickup** (field probe) to monitor fundamental mode field in the cavity. The signal:
 - provides **indirect measure of deflecting kick** \(V_t \) delivered by cavity:
 \[
 V_t = \sqrt{P_t \times Q_t \times R_t/Q}
 \]
 - used as primary **input for field** (amplitude and phase) **control** in the cavities via RF feedback

- For LHC crab cavities, pickup should **extract about 1 W fundamental mode power** \(P_t \) when cavity delivers **3.4 MV deflecting kick** \(Q_t = 2.8e10; R_t/Q \approx 430 \text{ Ohm} \) for both DQW and RFD cavities.

- This pickup **already** implemented in DQW and RFD **SPS-series** cavities.
Some background: **DQW SPS-series pickup**

- The pickup of DQW SPS-series cavities is **dual-purpose**; combines:
 - a **hook** to extract **fundamental mode** power for **monitoring** purposes
 - a ‘**mushroom**’ for **coupling and damping** of the **1754 MHz** mode

 ![Diagram of E-field for 400 MHz and 1754 MHz](image)

- The **pickup tip** exposed to large currents, made of **Nb** to **reduce heat load**; **the rest** fabricated in **Cu**, for better **heat extraction**.

 ![Diagram of niobium and copper](image)
The pickup revisited: Motivation

- SPS beam tests of DQWs evidence direct coupling of beam to pickup, with consequent impact on the RF feedback (see P. Baudreghien’s talk).

Cavity 1 antenna signal, MD#02 (30 May 2018), 1 MHz span; about 41.538 kHz (SPS rev. freq. = 43.450 kHz) from beam-induced voltage.
The pickup revisited: Motivation

- SPS beam tests of DQWs evidence **direct coupling** of beam to pickup, with consequent **impact on the RF feedback**.

- CST simulations reveal ‘**mushroom**’ to be **responsible** for **direct coupling**.

Voltage signal at pickup output from direct coupling of pickup to beam (single bunch, sigma = 30 mm, charge = 1 nC) [R. Calaga]

84 mm
The pickup revisited: Proposal, design goals

- Equip the DQW LHC-series cavity with **two horizontal tubes**, each connected to one of the beam pipes and **revisit pickup** design [R. Calaga]:

 1) Adopting **simple hook** to extract **1 W fundamental mode** at $V_t = 3.4$ MV
 - **Requirements**: reduced beam coupling, adequate Q_e (2.8e10), high Q_0 (reduced dissipation, copper preferred), consider machining.

 2) Opening **another** port for damping of **1.754 GHz** mode (also **backup pickup**)
 - see J. Mitchell’s talk

- **Second port integration validated** (LHCACFHT0258) [P. Marcillac, R. Leuxe]

![Diagram of DQW LHC-series cavity equipped with two horizontal tubes integrated into its helium vessel.](image)
The pickup revisited: DQW LHC-series pickup

- DQW SPS-series pickup w/o ’mushroom’ provides insufficient coupling ($Q_e = 5.5 \times 10^{10}$). Models below provide adequate field coupling ($Q_e \approx 2.8 \times 10^{10}$).

<table>
<thead>
<tr>
<th>Penetration (mm)</th>
<th>Clearance (mm)</th>
<th>Heat loss (mW, Cu)</th>
<th>Max. beam coupling (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DQW SPS-series</td>
<td>0</td>
<td>6.8</td>
<td><1 (Cu part)</td>
</tr>
<tr>
<td>C</td>
<td>-25</td>
<td>6.5</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>-19.5</td>
<td>10.8</td>
<td>22</td>
</tr>
</tbody>
</table>

Assumed R_s (Cu, 2K) = 1 mOhm for heat loss calculation (anomalous skin effect + 30% extra to account for surface roughness …)

About 4 W/m² dissipated power density localized in hook section.
The pickup revisited: **DQW LHC-series pickup**

CST SIMULATION SETTINGS
Non-iterative (thermal properties of materials not updated with temperature)

Pickup model: D

\[V_t = 3.4 \text{ MV} \]

\[T_0 = 2.1 \text{ K} \]

\[\sigma(Cu) = 5.8e7 \text{ S/m} \]

\[K(Cu) = \text{ W/K/m} \]

PRELIMINARY RESULTS
Most penetrating, thinnest wall hook leads to $\Delta T \sim 0.14 \text{ K}$, in principle, acceptable.

CONCLUSION
- Found a possible pickup with reduced beam coupling, heat loss, adequate field coupling. Can be made in copper. Good clearance to ease insertion.
- Repeat RF and thermal simulations incl. RF feedthrough, T-dependent material properties; compare with other software.
The pickup revisited: **What about the RFD?**

From the PDR (2018) ➔ see also Z. Li’s talk

The **field pickup** is placed on the VHOM side of the cavity using straight probe coupling […]. The designed power extraction by the field pickup is **1.5 W** at the **3.34 MV** deflection voltage, which corresponds to a **Q_{ext} value of 1.7×10^{10}**. […] has a **negligible effect on the field symmetry**.

![Voltage signal from RFD pickup coupling to beam is not negligible](image-url)
The pickup revisited: **RFD LHC-series pickup**

All below provide 1 W fundamental mode power at 3.4 MV deflecting kick.

<table>
<thead>
<tr>
<th>Penetration (mm)</th>
<th>-7.6</th>
<th>-9.8</th>
<th>-20.5</th>
<th>-15.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat loss (mW, Cu)</td>
<td>13</td>
<td>22</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Max. beam coupling (V)</td>
<td>2.2 (30% DQW)</td>
<td>1.5 (20% DQW)</td>
<td>0.6 (8% DQW)</td>
<td>0.6 (8% DQW)</td>
</tr>
</tbody>
</table>

Conclusion: a hook into vertical tube provides adequate field coupling, reduced beam coupling and reduced heat dissipation to be made in copper.
Summary and outlook

- Each crab cavity equipped with one pickup to monitor field in the cavity.

- SPS beam tests of DQW cryomodule evidence direct coupling of beam to pickup. Simulations also predict beam coupling to SPS-series RFD pickup.

- Investigated alternative pickup locations and designs; found possible solutions for DQW and RFD LHC-series that show small coupling to beam.

- The proposed DQW LHC-series pickup provides adequate Qe (2.8e10), reduced beam coupling and reduced heat dissipation to be made in Cu.

- Pickup tube orientation and antenna type of RFD cavity may need to change (vertical tube, hook coupler) to limit coupling to beam (to be discussed).

- Possibility to use the same pickup design for both DQW and RFD cavities (check length difference). Further studies needed (RF, thermal, including RF feedthrough).
Thanks for your attention

Acknowledgements
Thanks to Zenghai Li (SLAC) for providing the RFD cavity 3D model.

Funding agencies
Work supported by US DOE through Brookhaven Science Associates LLC under contract No. DE-SC0012704 and by the European Union HL-LHC Project.
Back-up
The pickup revisited: DQW LHC-series pickup

Observations:
- P0 varies greatly with antenna length (penetration).
- Qe mainly given by antenna length and hook width.
- Could further reduce P0 at expenses of clearance (\(wi = 20\) leaves 6.5 mm distance between hook and tube wall; \(wi = 16\) leaves 8.5).

Selection criteria – select...
1) parameter sets providing required Qe.
2) length to meet P0 budget (<10 mW).
3) hook width and thickness as per required Qe; thicker preferred for robustness and cooling.

The wider and the thicker, the shorter to reach required Qe.
For 3 mm minor diameter section, pu2l0 ~ 89 mm provides 1 W fundamental mode power and 20 mW dissipated in hook. About 4 W/m2 dissipated power density localized in hook section (actually power density calculated using power dissipated in the whole pickup, but using only surface area in the hook section).

- Increased **minor diameter of ellipse** from 3 mm to **4.4 mm** to ease manufacturing. Tried to keep **hook within envelope** of stem section (see blue-dashed line below).

- Evaluated Qe for different values of minor radius ellipse (pu2r2 = 1.5%2.2 mm) and stem length (pu2l0 = 85%115 mm). Observations: coupling barely changes with pu2r2 but does change dramatically with pu2l0. As required Qe is 2.75e10 to extract 1 W fundamental mode power, then it is convenient to choose the hook model with **thicker section (pu2r2 = 2.2 mm)** for expected improved heat extraction (however, it will lead to **higher dissipated power of 21 mW** with pu2l0 = 87.2 mm and qe = 2.86e10).
The pickup revisited: **DQW LHC-series pickup**

DQW SPS-series

C

D

![Graph showing signal voltage over time for different series](image)

- Red: DQW SPS-series
- Blue: DQW SPS-series (w/o T)
- Black: DQW LHC-series (C)
- Purple: DQW LHC-series (D)

Signal voltage (V)

Time (ns)

0 1 2 3 4 5

-10 -5 0 5 10
The pickup revisited: *RFD LHC-series pickup*

- RFD SPS pickup, more retracted
- RFD SPS pickup, tube close to cavity, further retracted
- Hook, vertical tube
- Contained hook, vertical tube

![Diagram of pickup configurations]

![Graph showing signal voltage over time for different pickup configurations]
Preliminary results: the widest hook provides the lowest temperature increase because it needs to penetrate less into the high field region.

To be done: repeat simulation including RF feedthrough, temperature-dependent material properties and possibly compare with other software’s results.