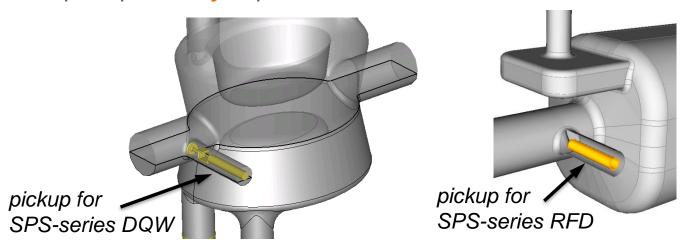
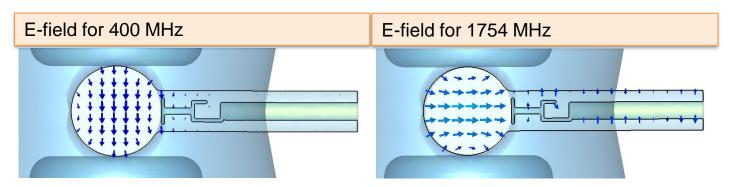


Evaluation of RF pickup antennas for crab cavity (DQW and RFD) LHC-series

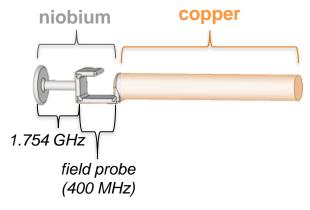

Silvia Verdú-Andrés (BNL), Rama Calaga (CERN)

Some background

- Each crab cavity equipped with one RF pickup (field probe) to monitor fundamental mode field in the cavity. The signal:
 - provides indirect measure of deflecting kick (Vt) delivered by cavity:


$$Vt = sqrt(Pt \times Qt \times Rt/Q)$$

- used as primary input for field (amplitude and phase) control in the cavities via RF feedback
- For LHC crab cavities, pickup should extract about 1 W fundamental mode power (Pt) when cavity delivers 3.4 MV deflecting kick (Qt = 2.8e10; Rt/Q ~ 430 Ohm for both DQW and RFD cavities).
- This pickup already implemented in DQW and RFD SPS-series cavities.

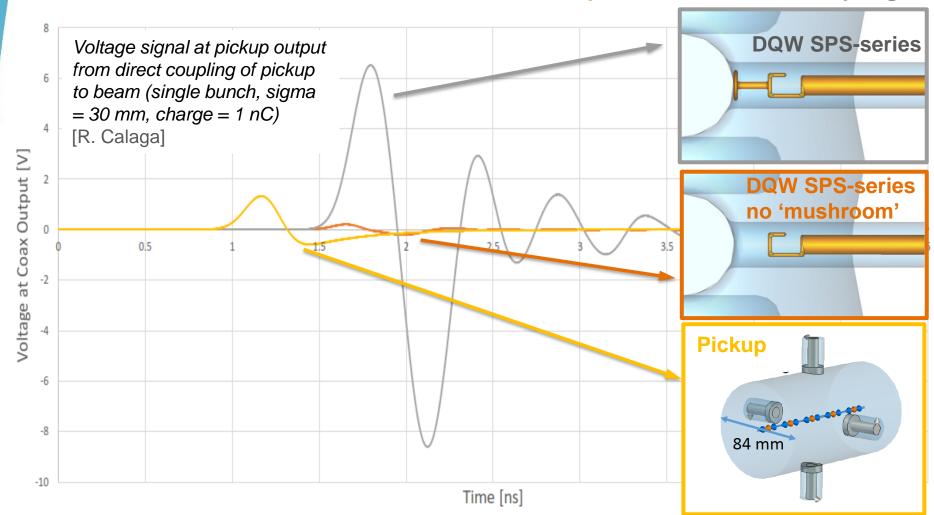


Some background: DQW SPS-series pickup

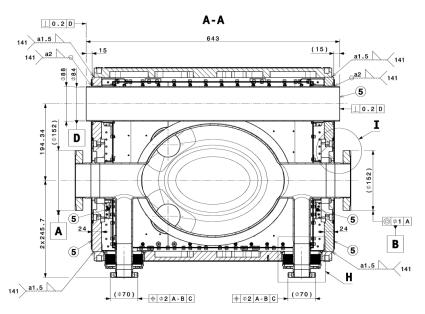
- The pickup of DQW SPS-series cavities is dual-purpose; combines:
 - a **hook** to extract **fundamental mode** power for **monitoring** purposes
 - a 'mushroom' for coupling and damping of the 1754 MHz mode

The pickup tip exposed to large currents, made of Nb to reduce heat load;
 the rest fabricated in Cu, for better heat extraction.

The pickup revisited: Motivation


 SPS beam tests of DQWs evidence direct coupling of beam to pickup, with consequent impact on the RF feedback (see P. Baudreghien's talk).

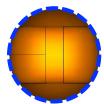
Cavity 1 antenna signal, MD#02 (30 May 2018), 1 MHz span; about 41.538 kHz (SPS rev. freq. = 43.450 kHz) from beam-induced voltage.


The pickup revisited: Motivation

- SPS beam tests of DQWs evidence direct coupling of beam to pickup, with consequent impact on the RF feedback.
- CST simulations reveal 'mushroom' to be responsible for direct coupling.

The pickup revisited: Proposal, design goals

- Equip the DQW LHC-series cavity with two horizontal tubes, each connected to one of the beam pipes and revisit pickup design [R. Calaga]:
- 1) Adopting **simple hook** to extract **1 W fundamental mode** at Vt = 3.4 MV
 - → Requirements: reduced beam coupling, adequate Qe (2.8e10), high Q0 (reduced dissipation, copper preferred), consider machining.
- 2) Opening another port for damping of 1.754 GHz mode (also backup pickup)
 - → see J. Mitchell's talk
- Second port integration validated (LHCACFHT0258) [P. Marcillac, R. Leuxe]

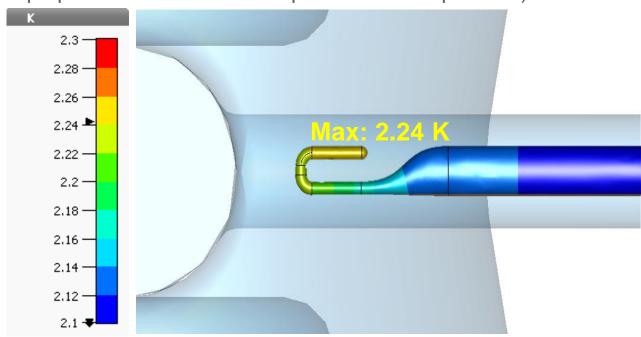


DQW LHC-series cavity equipped with two horizontal tubes integrated into its helium vessel.

DQW SPS-series pickup w/o 'mushroom' provides insufficient coupling
 (Qe = 5.5e10). Models below provide adequate field coupling (Qe ~ 2.8e10)

	Penetration (mm)	Clearance (mm)	Heat loss (mW, Cu)	Max. beam coupling (V)
DQW SPS-series	0	6.8	<1 (Cu part)	8 (100%)
C	-25	6.5	5	0.25 (3%)
D	-19.5	10.8	22	0.25 (3%)

D) Hook envelope contained within stem thickness:



- Assumed Rs (Cu, 2K) = 1 mOhm for heat loss calculation (anomalous skin effect + 30% extra to account for surface roughness ...)
- About 4 W/m2 dissipated power density localized in hook section.

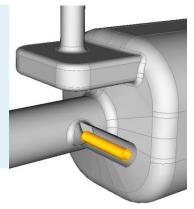
CST SIMULATION SETTINGS

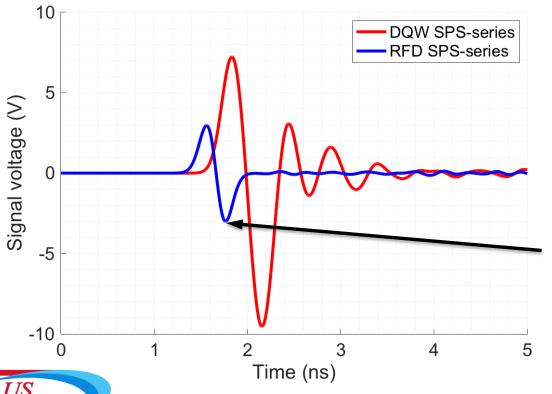
Non-iterative (thermal properties of materials not updated with temperature)

Pickup model: D Vt = 3.4 MV T0 = 2.1 K $\sigma(Cu) = 5.8e7 \text{ S/m}$ K(Cu) = W/K/m

PRELIMINARY RESULTS

Most penetrating, thinnest wall hook leads to $\Delta T \sim 0.14$ K, in principle, acceptable.


CONCLUSION


- Found a possible pickup with reduced beam coupling, heat loss, adequate field coupling. Can be made in copper. Good clearance to ease insertion.
- Repeat RF and thermal simulations incl. RF feedthrough, T-dependent material properties; compare with other software.

The pickup revisited: What about the RFD?

From the PDR (2018) → see also Z. Li's talk

The **field pickup** is placed on the VHOM side of the cavity using straight probe coupling [...]. The designed power extraction by the field pickup is **1.5 W at** the **3.34 MV** deflection voltage, which corresponds to a **Qext** value **of 1.7x10**¹⁰. [...] has a **negligible effect on the field symmetry**.

Voltage signal from RFD pickup coupling to beam is not negligible

All below provide 1 W fundamental mode power at 3.4 MV deflecting kick.

	RFD SPS pickup, more retracted	RFD SPS pickup, tube close to cavity, further retracted	Hook, vertical tube	Contained hook, vertical tube
Penetration (mm)	-7.6	-9.8	-20.5	-15.4
Heat loss (mW, Cu)	13	22	10	15
Max. beam coupling (V)	2.2 (30% DQW)	1.5 (20% DQW)	0.6 (8% DQW)	0.6 (8% DQW)

Insufficient retraction to significantly reduce coupling to beam.

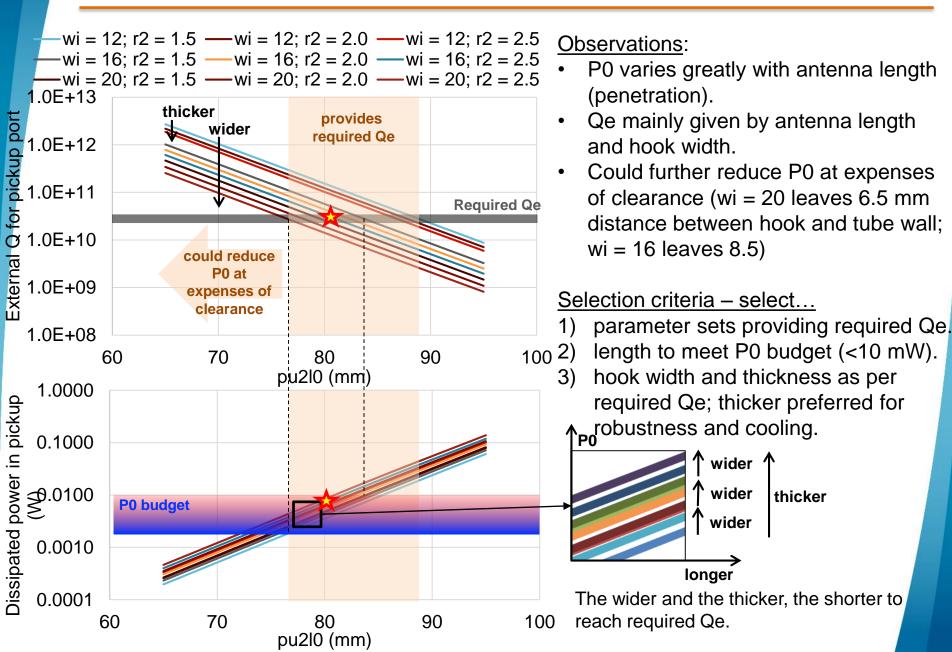
Larger coupling, allows retracting pickup further. Small coupling to beam.

Conclusion: a hook into vertical tube provides adequate field coupling, reduced beam coupling and reduced heat dissipation to be made in copper.

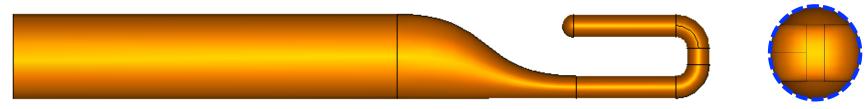
Summary and outlook

- Each crab cavity equipped with one pickup to monitor field in the cavity.
- SPS beam tests of DQW cryomodule evidence direct coupling of beam to pickup. Simulations also predict beam coupling to SPS-series RFD pickup.
- Investigated alternative pickup locations and designs; found possible solutions for DQW and RFD LHC-series that show small coupling to beam.
- The proposed DQW LHC-series pickup provides adequate Qe (2.8e10), reduced beam coupling and reduced heat dissipation to be made in Cu.
- Pickup tube orientation and antenna type of RFD cavity may need to change (vertical tube, hook coupler) to limit coupling to beam (to be discussed).
- Possibility to use the same pickup design for both DQW and RFD cavities (check length difference). Further studies needed (RF, thermal, including RF feedthrough).

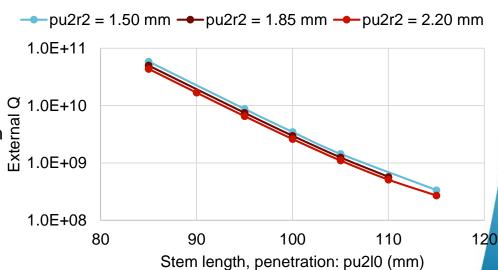
Thanks for your attention

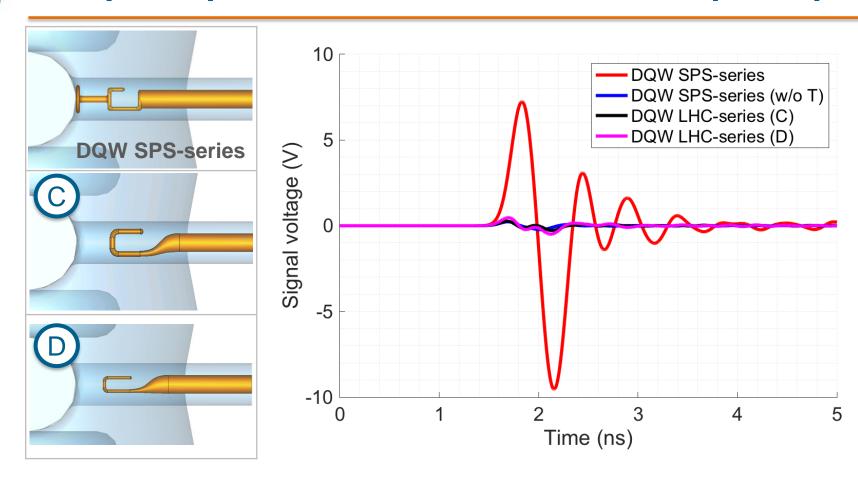

Acknowledgements

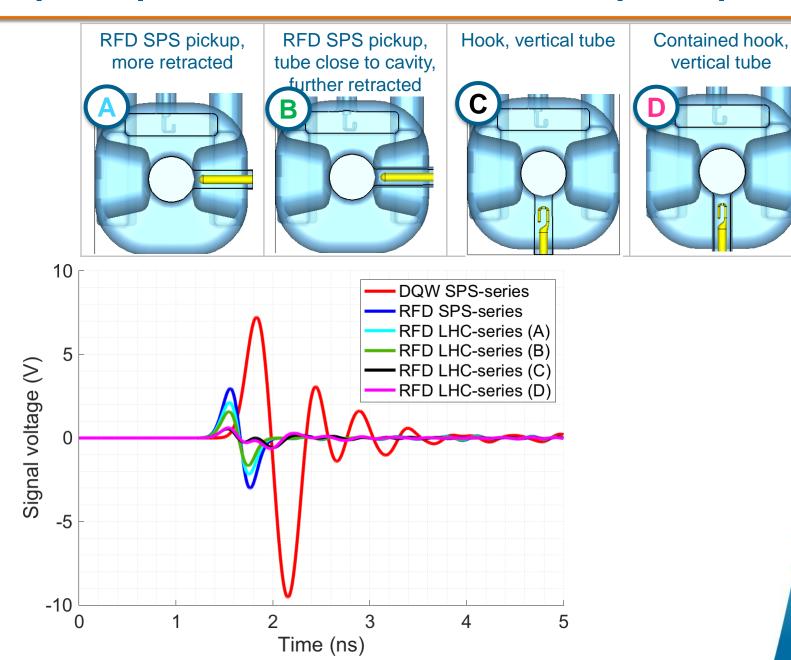
Thanks to Zenghai Li (SLAC) for providing the RFD cavity 3D model.

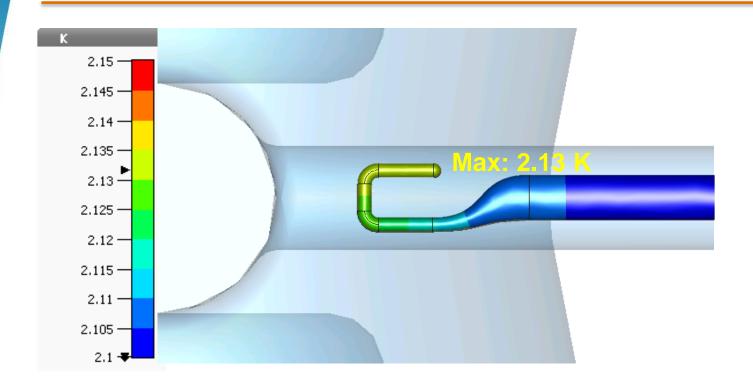

Funding agencies

Work supported by US DOE through Brookhaven Science Associates LLC under contract No. DE-SC0012704 and by the European Union HL-LHC Project.




- For 3 mm minor diameter section, pu2l0 ~ 89 mm provides 1 W fundamental mode power and 20 mW dissipated in hook. About 4 W/m2 dissipated power density localized in hook section (actually power density calculated using power dissipated in the whole pickup, but using only surface area in the hook section).
- Increased minor diameter of ellipse from 3 mm to 4.4 mm to ease manufacturing. Tried to keep hook within envelope of stem section (see blue-dashed line below).




Evaluated Qe for different values of minor radius ellipse (pu2r2 = 1.5%2.2 mm) and stem length (pu2l0 = 85%115 mm).

Observations: coupling barely changes with pu2r2 but does change dramatically with pu2l0. As required Qe is 2.75e10 to extract 1 W fundamental mode power, then it is convenient to choose the hook model with thicker section (pu2r2 = 2.2 mm) for expected improved heat extraction (however, it will lead to higher dissipated power of 21 mW with pu2l0 = 87.2 mm and ge = 2.86e10).

<u>Preliminary results</u>: the widest hook provides the lowest temperature increase because it needs to penetrate less into the high field region.

<u>To be done</u>: repeat simulation including RF feedthrough, temperature-dependent material properties and possibly compare with other software's results.