

Thermal studies & measurements for SPS-DQW

Eduardo Cano Pleite & Federico Carra EN-MME

with inputs from J. Apeland, K. Brodzinski, O. Capatina, T. Capelli, R. Leuxe, S. Verdú Andrés, C. Zanoni and many others

HL-LHC 8th Collaboration meeting – CERN – 16/10/2018

Outline

- 1. Introduction
- 2. Thermal balance for DQW
- 3. Comparison with measurements at SM18
- 4. Summary and conclusions

Outline

- 1. Introduction
- 2. Thermal balance for DQW
- 3. Comparison with measurements at SM18
- 4. Summary and conclusions

Heat budget, DQW cryomodule

Static loads	2013		20	15	2016		
	2 K	80 K	2 K	80 K	2 K	80 K	
Radiation	0.2	6.8	2	40	3.4	30	
CWT	3	12.6	0.2	2	0.2	10	
Supports	0.2	3.3	2	50	2	40	
RF / FPC	4	100	4	100	4	100	
Instrumentation	1	0	1	0	2.3	10	
HOM/Pickup	-	0	3	50	3.9	40	
Tuner	0.2	100	0.3	10	1	10	
Total static	13.6	222.7	12.5	252	16.8	240	

Dynamic Ioads	2013		20	15	2016		
	2 K	80 K	2 K	80 K	2 K	80 K	
Cavity	6	0	6	0	11	0	
Beam	0.5	0	0.5	0	0.5	0	
RF / FPC	4.6	20	5.6	10	4.9	10	
HOM/Pickup	-	-	6	20	4	10	
Total dynamic	11.1	20	18.1	30	21.4	20	

Heat budget, DQW cryomodule – December 2017

Static loads	2013		2015		2016		2017	
	2 K	80 K	2 K	80 K	2 K	80 K	2 K	80 K
Radiation	0.2	6.8	2	40	3.4	30	3.3	8
CWT	3	12.6	0.2	2	0.2	10	0.1	28
Supports	0.2	3.3	2	50	2	40	2.1	21
RF/FPC	4	100	4	100	4	100	5.3	72
Instrumentation	1	0	1	0	2.3	10	2.4	8
HOM/Pickup	-	0	3	50	3.9	40	5.5	15
Tuner	0.2	100	0.3	10	1	10	1.4	15
Total static	13.6	222.7	12.5	252	16.8	240	20.1	167

Static heat losses to 2K bath

Static heat losses to termal intercept

Heat budget, DQW cryomodule – December 2017

Static loads	2013		2015		2016		2017	
	2 K	80 K	2 K	80 K	2 K	80 K	2 K	80 K
Radiation	0.2	6.8	2	40	3.4	30	3.3	8
CWT	3	12.6	0.2	2	0.2	10	0.1	28
Supports	0.2	3.3	2	50	2	40	2.1	21
RF/FPC	4	100	4	100	4	100	5.3	72
Instrumentation	1	0	1	0	2.3	10	2.4	8
HOM/Pickup	-	0	3	50	3.9	40	5.5	15
Tuner	0.2	100	0.3	10	1	10	1.4	15
Total static	13.6	222.7	12.5	252	16.8	240	20.1	167

Static heat losses to 2K bath

Static heat losses to termal intercept

Heat budget, DQW cryomodule – December 2017

Static loads	2013		2015		2016		2017	
	2 K	80 K	2 K	80 K	2 K	80 K	2 K	80 K
Radiation	0.2	6.8	2	40	3.4	30	3.3	8
CWT	3	12.6	0.2	2	0.2	10	0.1	28
Supports	0.2	3.3	2	50	2	40	2.1	21
RF/FPC	4	100	4	100	4	100	5.3	72
Instrumentation	1	0	1	0	2.3	10	2.4	8
HOM/Pickup	-	0	3	50	3.9	40	5.5	15
Tuner	0.2	100	0.3	10	1	10	1.4	15
Total static	13.6	222.7	12.5	252	16.8	240	20.1	167

Some considerations:

- Update of latest heat loss estimations (November 2016).
- Use of experimental values for intercept estimations
- Margin with respect to the ideal calculations, to keep into account uncertainties (position and temperature of interceptors, machining tolerances, etc.)
 removed
- Conservative approach in the temperature estimations

Introduction – Experimental measurements

Experimental data from cooldown at SM18 – 14.12.2017.

Introduction – Experimental measurements

Introduction – Experimental measurements

Outline

- 1. Introduction
- 2. Thermal balance for DQW & experimental measurements
 - Radiation
 - Cold-warm transitions
 - Supporting system
 - Fundamental power coupler
 - Instrumentation
 - HOM couplers and pickup port
 - Tuner
- 3. Comparison with measurements at SM18
- 4. Summary and conclusions

Thermal balance – Radiation

 Radiation losses: minimized by the introduction of a thermal screen, with MLI on the inner and outer surfaces of the screen and the cold mass

Thermal balance – Radiation

- Holes are present in the thermal screen, to allow measurements for the aligning system and instrumentation. Holes act almost as black bodies.
- Temperature of the thermal shield extracted from the cold-warm transitions measurements.
- Surfaces inside the thermal shield can radiate to the ambient at 300 K.

- Thermal load (LHC measurements, V. Parma and R. Bonomi) ~ 0.15 W
- Additional heat losses because of holes ~3.1 W
- Numerical results:
 - **3.3 W** to the 2 K bath
 - **8 W** to the interceptors

Thermal balance – Cold-warm transitions

- Cold-Warm transitions (CWT) connect the cold mass to the warm beam pipe
- Losses are dominated by conduction

Thermal balance – Cold-warm transitions

- Losses on the CWT are minimized by the presence of the stainless steel bellows
- Very high thermal resistance introduced

 $\mathsf{T}_{\mathsf{room}}$

Thermal balance – Cold-warm transitions

- Losses on the CWT are minimized by the presence of the stainless steel bellows
- Very high thermal resistance introduced

- Thermalization between the bellows and the stainless steel tubes: experimental values of T_{thermalization}
- Simple analytical calculation:
 0.35 W/CWT to 2 K without heat interceptors, 0.04 W/CWT intercepting
- 14 W/CWT to the interceptors

- The supports connect the cavity to the cryomodule and the He line
- Losses are dominated by conduction

- Three different supports considered: cavity and He line.
- Intercept temperature as average between CWT and available intercept temperature measurements.

- Three different supports considered: <u>cavity</u> and He line.
- Intercept temperature as average between CWT and available intercept temperature measurements.

Blade support of each cavity

- Sensitivity analysis for the position of the thermalizations.
- Numerical calculation (ANSYS):
 - 0.9 W per support to 2 K.
 - **7.7 W** per support to the interceptors

- Three different supports considered: cavity and <u>He line</u>.
- Intercept temperature as average between CWT and available intercept temperature measurements.

- 0.3 W to the 2 K bath
- 3.8 W to the intercepts

- **0.1 W** to the 2 K bath
- 1.3 W to the intercepts

Thermal balance – FPC

- It brings the RF power to the cavity
- Exchanges heat with the cold mass by radiation (antenna) and by conduction (can)

Thermal balance – FPC

FPC can – 316LN, copper coated

- Temperature at the intercept:
 - FPC 1: measured
 - FPC 2: extrapolated from measurements and FPC 1
- Analytical calculation: radiation + conduction
 - 5.3 W to 2 K bath for two FPCs
 - **72 W** to intercept for two FPCs

Thermal balance – FPC

FPC can - 316LN, copper coated

- Temperature at the intercept:
 - FPC 1: measured
 - FPC 2: extrapolated from measurements and FPC 1
- Analytical calculation: radiation + conduction
 - 5.3 W to 2 K bath for two FPCs
 - 72 W to intercept for two FPCs

FPC antenna - Copper OFE

- Heating on the antenna generated when RF on
- Can lead to high temperatures of Cu (creep, outgassing, high radiation to cold mass)
- Each hook radiates ~0.8 W to the cold mass

Thermal balance – Instrumentation

Thermal balance – Instrumentation

- Constant cross section of the cables
- Temperature of the thermalization: average of available experimental measurements.
- Some cables are considered shorter than they really are: conservative approach
- Thermalization length factor 0.7
- Only conduction losses

2.4 W to 2 K bath8 W to intercept

- 1 upper HOM, 2 lower HOM and 1 pickup port per cavity.
- Losses are exchanged by conduction in the coaxial lines and cables

Coaxial lines

- Stainless steel tubes, Cu coating: 5 microns
- Interception needed both on inner and outer conductors
- Inner tube: interception with a ceramic electrical insulator, thermal conductor
- Calculation performed analytically: coax. line + cable

Coaxial lines

- Stainless steel tubes, Cu coating: 5 microns
- Interception needed both on inner and outer conductors
- Inner tube: interception with a ceramic electrical insulator, thermal conductor
- Calculation performed analytically: coax. line + cable

Coaxial lines

- Stainless steel tubes, Cu coating: 5 microns
- Interception needed both on inner and outer conductors
- Inner tube: interception with a ceramic electrical insulator, thermal conductor
- Calculation performed analytically: coax. line + cable

Cables assumed as a system of resistances in parallel

$$\begin{aligned} Q_{bath} &:= \left(\frac{A_{2i}}{L_2} \cdot \int_{T_{x1}}^{T_{int}} k_{ss}(T) dT\right) + \left(\frac{A_{2e}}{L_2} \cdot \int_{T_{x1}}^{T_{int}} k_{ss}(T) dT\right) \\ &+ \left(\frac{A_{2i_coating}}{L_2} \cdot \int_{T_{x1}}^{T_{int}} k_{cu}(T) dT\right) + \left(\frac{A_{2e_coating}}{L_2} \cdot \int_{T_{x1}}^{T_{int}} k_{cu}(T) dT\right) \end{aligned}$$

Coaxial lines

- Stainless steel tubes, Cu coating: 5 microns
- Interception needed both on inner and outer conductors
- Inner tube: interception with a ceramic electrical insulator, thermal conductor
- Calculation performed analytically: coax. line + cable

- Simple analytical calculation:
 - HOMs: 4.9 W to 2 K and 13 W to the intercepts
 - Pickups: 0.6 W to 2 K and 2 W to the intercepts

Coaxial lines

Stainless steel tubes, Cu coating: 5 microns

Interception needed both on inner and outer conductors

 Inner tube: interception with a ceramic electrical insulator, thermal conductor

Calculation performed analytically: coax. line + cable

Temperature of the intercept assumed similar in all HOM lines:
 conservative approach

 Alternative method: integrating between available temperature measurements in the HOM line:

HOMs: 1.3 W to 2 K and 12 W to the intercepts

Thermal balance – Tuning system

- Tuning system locally deforms the cavity to change its fundamental frequency
- Losses are dominated by conduction

Thermal balance –Tuning system

- Simplification of the tuning frame geometry.
- Frame blades in contact with the cold mass
- Thermalization of the frame assumed at the average temperature of the thermalization measurements.

0.7 W/tuner to 2 K and **7.6 W/tuner** to the intercepts

Outline

- 1. Introduction
- 2. Thermal balance for DQW
- 3. Comparison with measurements at SM18
- 4. Summary and conclusions

Comparison with measurements at SM18

- Total estimated heat loss is 20.1 W to the 2 K bath and 160 W to the intercept
- Calculations are done using, in general, conservative approaches
- Experimental results obtained from the evaporation of He at SM18

The heat load to 2 K is measured at level of 18 W

VERY GOOD AGREEMENT BETWEEN NUMERICAL ESTIMATIONS AND EXPERIMENTAL RESULTS!

Outline

- 1. Introduction
- 2. Thermal balance for DQW
- 3. Comparison with measurements at SM18
- 4. Summary and conclusions

Summary and conclusions

- The thermal balance of the cryomodule, estimated at first in 2013, has been continuously updated and reviewed with the design advancement
- This last update considers values extracted from experimental measurements of the cryomodule cooldown in SM18.
- The calculations done for evaluating the total heat losses encompass analytical, semi-analytical and numerical methods
- No safety margins on the heat losses are contained in the estimation. However, conservative hypothesis have been considered during the numerical evaluation of the loads.
- Very good agreement between estimated and measured heat loss to the 2 K bath!

Thank you for your attention!

