Update on Luminosity monitoring for HL-LHC

M. Palm (BE-BI-PM)

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
- Summary & Outlook

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
- Summary & Outlook

Overview

- BRAN: Beam RAte of Neutrals
- What: Machine luminosity monitors
- Where: IP1/5, IP2, IP8
- Use cases: Finding collisions, backup instrument for OP (if no data from experiments), cross-check experiments, sanity check, ...
- Precision: ~1% @ 1 Hz (absolute luminosity not necessary)
- Challenges: Large dynamic range, radiation (IP1/5: 180 MGy/year), limited space
- HL-LHC: Cherenkov radiation based monitors

BRAN prototype

Luminosity monitoring

Forward Neutral debris from IP → Absorption in TAN → Charged secondaries → Cherenkov radiation

 2 different Cherenkov media tested in LHC (TAN, Left of IP1)

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
- Summary & Outlook

Radiation effects - Transmission

- Main concern: reduced optical transmission
- 4 rods recuperated from TAN after 1-2 years of LHC operation
 - No visible discoloration or opacity (by eye)
- Shipped to ZDC group at University of Illinois for measurements

[Courtesy: M. Phipps & G. Avoni]

BRAN Fused silica rods (irradiated)

Measured rod transmission

- Sharp absorption centers in UV range (214 nm, 325 nm
 - Most of the Cherenkov light is in this region
- Broad absorption around 630 nm
- Note:
 - Rod #3 (red) only exposed during 2016.1.5 years of annealing.
 - Other rods: 2016-2017, 0.5 years of annealing
- Conclusion
 - Quartz type matters...
 - Visible range will still provide a signal even if UV transmission should drop to 0. "Signal floor".

General performance

 Good agreement between prototype signal and ATLAS luminosity

Signal "gain":

•
$$G_{\text{slot}} = \frac{\langle U_{slot} \rangle}{L_{tot}/N_b}$$

 Fairly stable gain from mid-2016 until today

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
- Summary & Outlook

Aluminum mirrors

3 mirrors installedDifferent heights

- Mirror with largest signal (#12) has also degraded the most
 - Currently: -20%/10 fb⁻¹
 - No sign of flattening out...
- Reflectivity will be re-measured during LS2 to verify if signal loss is due to mirror degradation.
 - Other possibility: diffuse reflections?
- **■** ⇒ Fused silica rods seems to be the best option.

	Mirror #10	Mirror #11	Mirror #12
Initial gain [compared to quartz rod]	0.6%	2.8%	8.3%
Gain loss up to 54 fb ⁻¹	-32%	-43%	-83%

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
 - Available space
 - X-ing angle
 - Dynamic range
- Summary & Outlook

Available space

TAXN cross section

- 50 mm available between beam pipes
- 100 mm available above copper block

X-ing angle

Cannot only intercept fraction of shower \rightarrow X-ing angle dependence

Luminosity-levelling by X-ing angle

X-ing angle drift/shift during beam separation scans?

HL-LHC: no precise estimate (LHC:
 <1 μrad [preliminary est.])

Rods

Fluence gradient: $\sim 0.5\%/\mu rad$

[Simulations: Courtesy A. Tsinganis & F. Cerutti]

- Infer X-ing angle from rods between pipes?
 - Need very precise calibration...
 - Dose rate in left/right rods is different → rod transmissions will change at different rates
- Shorter rods above beam pipes?
 - Wider profile → Less precision
 - Dose rate ~2-3 orders of magnitude lower → Transmission slowly degrading over several years (~1000 fb⁻¹)
- Conclusion: for horizontal X-ing, the measured BRAN luminosity will have a X-ing angle dependence

Dynamic range

Luminosity range (p-p & Pb-Pb)

Total luminosity: 12 orders of magnitude

Signal range

- ~20,000 times more signal for Pb-Pb than p-p for a given luminosity
- Light yield per bunch crossing "only" spans 4-5 orders of magnitude.

Total light yield: 8 orders of magnitude

<u>Light yield per bunch: ~4-5 orders of magnitude</u>

Design considerations: summary

- Fused silica rods/Aluminum mirrors?
- X-ing angle dependence (horizontal)
 - We have to live with it.
- Physical space constraints
 - Difficult to fit more than two parallel quartz rods + PMT + "cross-talk shielding" in 50 mm
- Dynamic range
 - 4-5 orders of magnitude in terms of photons/collision should be covered
- Available light
 - If we extract a sufficient fraction of light from the fused silica rod to the PMT, we can cover a very large dynamic range
- Transmission loss
 - Almost all observed transmission loss of fused silica occurs within first ~10 fb⁻¹, but then remains stable.
 - Foresee (manual) adjustment of light yield e.g. at first technical stop after installation.
 - Design constraint: this should be quick and simple!
- Also: If we can't handle X-ing angles very well, then we should at least make sure that the BRAN has an "impressive" dynamic range.

- Warning: the TAN/TAXN is a beast against which many detectors have failed...
 - "Simple but reliable"
 better than "Perfect but complex"

IP1/5

Fused silica

Channel sensitivity range

p-e = photoelectron cps = counts per second

Low sensitivity channel

 Current prototype serves as baseline for precise light yield estimates and dimensions

High sensitivity channels

- HV off and cathode shielded at normal operation
 - Add pullsolenoid shutter

- Light yield tuning:
 - PMT-Rod distance
 - Graduated iris diaphragm

- BRAN: HL-LHC luminosity monitor
- Results & observations
 - Fused silica
 - Aluminum mirrors
- Design considerations
- Summary & Outlook

Summary & Outlook

- Fused silica is a feasible Cherenkov medium for the TAXN environment
- Aluminum mirrors still degrading
- Horizontal X-ing angle dependence
- HL-LHC BRAN will measure luminosity over 12 orders of magnitude
- LS2: Replace 2 BRAN-A monitors (ionization chambers) with 2 fused silica BRANs

Thank you for your attention!

Acknowledgments:

E. Bravin, F. Roncarolo,

T. Schneider (Al-mirrors),

M. Phipps et.al (ZDC)

Backup slides

PMT saturation

- 2018 trend: Gain loss
- Prototype: light yield on PMT cannot be easily tuned → Change voltage instead (1250 V → 750 V)
- PMT recovered!
- Gain returned (slowly) to initial level
- Gain variation during fill stabilized: from ~10% to ~1% variation

24

PMT saturation

- 2018 trend: Gain loss
- Prototype: light yield on PMT cannot be easily tuned → Change voltage instead (1250 V → 750 V)
- PMT recovered!
- Gain returned (slowly) to initial level
- Gain variation during fill stabilized: from ~10% to ~1% variation

Recap: data acquisition

- Voltage-integral histogram of single bunch pair logged
 - 25 ns window (=1 slot)
 - 2016-2017: No baseline correction
- Slot-integral has 3 components
 - $\langle U_0 \rangle$ = Background signal
 - $\langle U_{tot} \rangle$ = Baseline shift during collisions.
 - $\langle U_{bunch} \rangle$ = Mean signal from single bunch pair collision
 - $\langle U_{slot} \rangle = \langle U_0 \rangle + \langle U_{tot} \rangle + \langle U_{bunch} \rangle$
- Significant baseline shift with higher PMT current
 - $\propto I_{mean}$
 - ~Half(!) the voltage integral comes from baseline (red) at high luminosity
 - Not logged 2016-2017
 - 2018: detailed logging
 - →Restrict long-term evaluation to data points with similar luminosity

Terminology

- Quartz
 - Natural or synthetic
 - Crystalline SiO2
 - Purity: case-by-case
- Fused quartz
 - Amorphous SiO2
 - Made from natural crushed quartz
 - Natural impurities may persist into finished product
- Fused silica
 - Synthetic amorphous SiO2
 - Made from oxidized Si-gas
 - Potentially ultra-pure

Absorbed dose (Gamma spectroscopy)

- 2016: Negative X-ing angle
- 2017: Positive Xing angle
- Current design:
 30 mm gap:
 TAN-floor to end of quartz rod
- → BRAN "floor" should be made thinner.

Activity vs. vertical rod coordinate (0 = bottom of rod)

Light yield

- Light from particles going exactly forward won't reach PMT (total internal reflection at top)
 - Light extraction efficiency is pretty low
 - Angular divergence of charged secondaries ≠0
 - Each collision at μ=138 generates light equivalent to 2 million PMT "counts"
- →We can have as much signal as we need
 - Light yield on PMT can be tuned by adjusting Rod-PMT gap

Track length/event (charged particles) @ Dose peak	98 cm/cm ³
Photon yield, quartz	1003 photons/cm ³
Equivalent PMT counts (incl. QE)	145 counts/cm ³
PMT counts/event	14210
Nominal pile-up, HL-LHC	138
PMT counts/crossing (1 cm ³ fused silica at dose peak)	=> 2,000,000

Aluminum mirrors

3 mirrors installedDifferent heights

- Mirror with largest signal (#12) has also degraded the most
 - Currently: -20%/10 fb⁻¹
 - No sign of flattening out...
- Reflectivity will be re-measured during LS2 to verify if signal loss due to mirror degradation.
 - Other possibility: diffuse reflections?
- ⇒ We will go for fused silica rods.

	Mirror #10	Mirror #11	Mirror #12
Initial gain [compared to quartz rod]	0.6%	2.8%	8.3%
Gain loss up to 54 fb ⁻¹	-32%	-43%	-83%

