

RFD Crab Cavity Manufacturing

M. Garlaschè on behalf of RFD Prototype Manufacturing Team

8th HL-LHC Collaboration Meeting – 18th Oct. 2018 (CERN, Geneva)

RFD Crab Cavity Prototypes

Manufacturing of 2x Jacketed Cavities

- RFD-SPS cavity fabrication started at CERN, cryostating to be performed at UK and the conceptual design in an advanced stage
- RFD-HL-LHC dressed cavities in-kind contribution from US-AUP with CD1 approval
- RFD-HL-LHC cryostating is approved to be an in-kind from Canada-TRIUMF

See R. Calaga talk (16th Oct.)

RFD Cavity: Manufacturing Cut Out

Rationale behind RFD prototype cut out:

- Favor high-added-value operations (EB welding, trimming)
- Shaping of easiest subcomponents
- Make use of DQW know-how and (tooling!)
- Optimize raw material cost VS. Process (Memento: 2x cavities)

Cavity Build Up

Manufacturing
Phases
Tol

Cavity Build Up

RFD Cavity Manufacturing: Strategy

- Extremities: same procedure (and tools) as per DQW
- Initial tests in annealed Cu OFE, then Niobium
- Material:
 - Stainless Steels, Bronze (CuSn12), EN 1.2343, ...
 - Highly attentive to Niobium and NbTi condition @ reception

Niobium:

- Alumina inclusions
- Automatic inspection on samples of incoming material

NbTi:

 Niobium inclusions, not detected during supplier NDT

Experience is directly translated onto **ongoing discussions** with suppliers and into current updates of **corresponding CERN specifications**: (# 3300, # 3301, # 4055)

Manufacturing: Machining Strategy

How to handle unconventional shapes?

The real world...

- ...theoretical-shape clamping...
- More indulgent on shaping and machining
- Advanced tools needed down to last weld
- ...VS. free-state (stress-free)clamping...
- Forming: must yield best shape possible (→ coining!)
- Machining: no easy referencing.. must go hand in hand with metrology
- Welding: no last minute surprises

Manufacturing: Welding Strategy

Butt welds (no key/slotted configuration):

- Easy check for alignment and defects
- Easy RF trimming
- Multi-axis milling

If RF surface visible:

4mm weld, smoothing on RF side.

If **RF surface not visible**: thickness reduction for critical welds (→lower energy input, less risky,..)

Backing Ring when remachining feasible

Finite Element Simulations

Why?

- Compare different manufacturing choices & steer strategy
- identify forming defects & highly stressed regions
- predict on the final thickness distribution

What?

Shaping of: Pole, Main Body, H-HOM waveguide, End Cap, Corner

Working on **Springback** modelling and ongoing **material characterizations**:

- Anysotropy
- Niobium Frictional behaviour

r values curves for each direction and their averages

Waveguides

Deep drawing + coining of half-boxes No extrusion of extremity interface

- Less forming steps
- High forming ratios and stretching in correspondance of extremity interface
- easier machining (only thickness & height for EBW)
- Challenging EBW due to sudden EB direction changes:
- RF side 100% accessible for smoothing & eventual repairs

Waveguides: H-HOM Status

Good global shape tolerances achieved Tool modification ongoing for improvement on:

- shape nonconformity due to springback
- thickness reduction @ angles

0.7mm

Corner

Shaping:

Bending + Extrusion + Coining

Machining

 multi-axial thickness reduction on both int & ext edges

Rigid component (6.35 mm thickness)

- calibration after forming
- Stiffer during machining
- Shaping defects propagate to CNC machining

HiLumi 2018 / M. Garlaschè [CERN]

Corner: Status

Metrology (after shaping and coining):

- RF perimeter @ weld: smaller in avg. 0.2mm (per radius)
- Shape error peaks due to thinning of material during extrusion

Machining + re-coining should grant 0.1mm enlargement (per radius)

Local calibration for remaining nonconformities

Main Body

Shaping: standard process via press bend

Multi-axis machining for interface with corner

Status: ready for shaping of cavity parts

Universal machining tool

Pole

...With respect to DQW Bowl.. Shaping/machining/welding strategy is in all similar

Large **displacements** of sheet (friction) RF surface open to the world More **radical rates of strain** on the piece

Pole: Strategy & Status

HiLumi 2018 / M. Garlaschè [CERN]

RFD Manufacturing: Sub-deliverables

Deliverable #3:

Welding of major subassemblies onto 2x cavities. Where provided subassemblies carry reduced Shaping-remachining interactions

Deliverable #2:

- Waveguides: ready for welding onto Deliverable #1
- Remaining extremities ready for welding with Deliverable #1

Deliverable #1:

- Main body ready for deliverable #3 (tuner + stiffener welding)
- End Cap ready for welding with Deliverable #2

Deliverable #1 & #2: Status

R&D phase to be finalized in Q4 2018

After Manufacturing Plan: welding tests, qualifications and prototypes production

Subc.	Material	Tools Forming	Tools Machining	Forming Test Cu	Forming Test Nb	Manuf. Plan
Extremity						
Waveguides						
Bulk Transitions						
Pole						
Corner						
Main Body						
End Cap						

Conclusions

- DQW experience instrumental for RFD manufacturing strategy
- Interactions with Nb/NbTi material supplier: small delay for missing Niobium, but instrumental for future series orders
- Feasibility check for initial processes to be finalized in upcoming weeks.
- Shaping strategy for all critical components validated.

First Niobium pieces in sight.

Next:

- Launch production of extremities
- Weld tests & qualifications

Thanks!