

Additive Manufacturing for Crabs

Romain Gerard

Mechanical and Materials Engineering group (EN-MME)

Outline

- I. Metal Additive Manufacturing at CERN
- II. AM of DQW HOM coupler in niobium
 - Advances in purification by Ti-gettering
- III. AM of Al2O3 ceramic windows with cooling
- IV. Future perspectives and conclusions

MME's AM workshop at CERN

Machine:

- SLM 280HL (SLM Solutions)
- 400 W laser (1070 nm)
- Tri-axis scanning system

Build volume:

- 280 x 280 x 360 mm³
- •SS 316 L • Niobium (R&D)

Materials

•Ti6Al4V

- •Potential:
- Copper
- •Mo

Location

- •CERN-Meyrin
- •bldg 156

Niobium development

Niobium powder for SLM

Density of SLM niobium

Darasity man /yaid 0/ \ for different present personators

vertical wall >0.5mm thickness are Helium Leak tight

Material	Thickness (mm)		He leak (mbar.l/s)	Leak tight
5	2	4.0 10-3	<10 ⁻¹⁰	YES
	1.5	5.310-3	<10 ⁻¹⁰	YES
Nh	1	5.0 10-3	<10-10	YES
MD	0.75	5.6 10 ⁻³	<10-10	YES
	0.5	5.6 10 ⁻³	<10 ⁻¹⁰	YES
	0.25	5	T	NO

9-13 April 2018

FCC Week 2018

11

More info: https://indico.cern.ch/event/656491/contributions/2915671/

HOM coupler for crab cavity **DQW**

Why 3D printing an HOM?

- Bring cooling closer to high field area ex: bring He to the tip of the hook
- 2. Test bed for novel Nb parts designed from scratch
- 3. Design freedom advantages
 - Manufacture directly on a Ti Flange Hybrid AM
 - Reduce assemblies (save time and costs)
- 4. (Possible reduction of cost thanks to better material utilisation rate)

DQW 3D HOM: Leak tightness to superfluid He

Next step: CF DN40 flange dressing

To be tested in cryolab:

"reversed leak test": Vacuum inside, SF He outside

Superfinishing of the parts

As-build

Polished with MMP TECHNOLOGY®

MMP: Mechanical-physical-chemical surface treatment applied to items placed inside a treatment tank.

Niobium

Niobium samples

Nb SLM As built					
R_a	10.8 μm				
R_z	65 μm				
R_t	78.5 μm				

Nb SLM after MMP					
0.070 μm	R_a				
0.7 μm	R_z				

 R_t

1.62 μm

Chemical composition of SLM Nb: High quantity of light interstitial elements

Element in μg/g	Nb	Ο	N	С	Н	Al	Ti	Та	Mo	Si	Fe	Others
Powder	99.98%	510	99	39	60	120	66	35	31	24	16	<35 in total
Parts	99.98%	590	150	39	9.6	90	31	30	17	15	14	<35 in total
CERN RRR300		10	10	10	2	30	50	500	50	30	30	30 each

All light interstitial impurities are out of traditional RRR300 specifications

Aluminium impurities due to cross-contamination during atomisation

Purification of SLM Nb Re-discovery of Ti-gettering purification

Working principle:

- Vaporisation of Titanium at high temperature (1000-1400 °C) and high vacuum (10⁻⁵mbar)
- 2. Deposition on the SLM Nb parts $(1 10 \mu m \text{ thickness})$
- 3. Diffusion of light impurities from the Nb to the Ti coating (2000 8000 min)
- Removal of the outer layer with chemical etching

RRR after Ti-gettering treatment

Optimum to find:

- High T/ long duration
 - > Ti diffuses in Nb
- Low T/ short duration
 - Not enough Ti deposition or O/N/C diffusion

Exploration of dual-Temperature Heat-treatment?

Purification heat treatment

RRR measurement Heat treatment at 1200 C

As-build

Chemical composition				
As-build				
0	590			
N	150			
С	39			
Н	9.6			
Al	90			
Ti	31			

After Ti-gettering

	Chemical composition					
	After Ti-get	unit				
	17	ppm wt.				
	<5	ppm wt.				
	<5	ppm wt.				
	1.1	ppm wt.				
	90	ppm wt.				
	100	ppm wt.				

Layer inspection with Focused Ion Beam Short treatment 1000min @ 1300 °C

Results: A. J. G. Lunt EN-MME-MM EDMS 2024699

Layer inspection with Focused Ion Beam Long treatment 7000min @ 1300 °C

Results: A. J. G. Lunt EN-MME-MM EDMS 2024699

Outline

- Metal Additive Manufacturing at CERN
- II. AM of DQW HOM coupler in niobium
 - Advances in purification by Ti-gettering
- III. AM of Al2O3 ceramic windows with cooling
- IV. Future perspectives and conclusions

Crab cavity FPC

Crab Ceramic RF window

Ceramic 3D printing

Video courtesy of 3D CERAM (FR)

3D printed Ceramic with cooling channels

Redesigned watercooled concept

3D printed

Metrology and inspection with X-Ray CT

Planarity: **400 µm** Cylindricity: **126 µm**

Requirements: 20µm

Machining to be performed

X-ray CT unvealed clogged channels

 Due to poor removal of binder (subsequently sintered)

To be corrected with design adjustment

Conclusions and future perspectives

- I. Niobium Additive Manufacturing was demonstrated in 2018
 - > Further characterisation is moving forward
 - Superfluid He leak test of the complete HOM part
 - QPR RF characterisation
- II. Titanium gettering purification is further understood
 - Different diffusion regimes are revealed with FIB (dep. time and T)
 - Yields to at least a factor 10 improvement in RRR to ~70
- III. Currently preparing a Nb run on the AM machine
 - Innovative modification of the machine to produce long parts with minimal powder investment
 - Ongoing discussions for narrower chemical comp. of Nb powder
- IV. AM of Al2O3 ceramic with cooling channel feasible
 - However heavy post-processing required before brazing (rectification and metallisation)
 - Removal of the binder in the channels to be solved

Thank you for your attention!

