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Scope of this talk

Focus on the operating margin of the MBH
(11T) Nb,Sn coll, heat transfer from the coll to
the superfluid helium bath and comparison to
MB Nb-Ti coll

Values of heat loads due to collimation loss are
provided by HL-LHC WP5, and recently
summarized by S. Redaelli and C. Bahamonde,
etal. In TCC 54, 2/8/2018

Analysis of heat transfer in the helium bath in
the cold mass was already presented by R. Van
Weelderen, et al. in TCC 54, 2/8/2018

The ultimate and bold goal is to provide the
expected quench limits for the MBH (11T)
Nb;Sn magnets
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Background — 1/4

B. Auchmann et al., Phys. Rev. ST Accel. Beams, 18, 061002 (2015)
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Present LHC guench limits (Nb-Ti magnets)

20 to 45 mW/cm? steady state losses (average over cable cross section)

“Measured” 20 to 30 mW/cm? at 6.37 TeV, a factor of two lower than the optimistic
estimate

3 to 10 mJ/cm? energy for fast losses (average over cable cross section)
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energy margin (mJicm?)
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Good agreement between multi-strand 1D model of stability and results
derived from the quench tests in the LHC !

It is important to consider the details of the cable strands, geometry, field and heat
distributions

The presence of the interstitial helium leads to a large enhancement of stability

The transient heat transfer model is a critical matter, especially for fast (1 ms) and ultra-fast
(1us) characteristic times
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Collimation loss expected at MBB.B8 (7 TeV)

Values as defined by C. Bahamonde, et al. in TCC
54, 2/8/2018, and previous analyses

Local and total loss depend on the assumption on
the Beam Life Time (BLT)

BLT =1 hour BLT =12 min
Coil peak: 2 mW/cm3 Coil peak: 11 mW/cm3
Protons | Coll total: 11 W (0.2 mw/cm?) | Coll total: 54 W (1 mW/cmd)
Cold mass total: 34 W Cold mass total: 170 W
Coil peak: 4 mW/cm3 Coil peak: 21 mW/cm3
lons | Coil total: 20 W (0.4 mw/cmd) | Coil total: 98 W (1.8 mW/cm?3)
Cold mass total: 66 W Cold mass total: 330 W

Thermal loads in the 11T magnet in MBB.B8 for different assumptions on the BLT

| am not entering in the discussion on BLT
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Cooling of the cold mass (from coil to HX)

Reference values have been given by R. Van
Weelderen, et al. in TCC 54, 2/8/2018 for protons
and ions and two different hypotheses on the BLT

Heat removal from cold mass is OK for BLT=1 hour

Temperature will drift for BLT=12 min (the coils will
heat nearly adiabatically, beam dumped in 10 s)

BLT =1 hour BLT =12 min
Protons Q8-Q9: « (85w) Q8-Q9: 40 mins (333 w)
Q10-Q11: « (88..95W) Q10-Q11: 30 mins (348...383 W)
lons Q8-Q9: few hours (120 w) Q8-Q9: 20 mins (508 w)
Q10-Q11: 2 hours (162...177 W) Q10-Q11: 10 mins (718...793 W)

Time expected to reach T, in half cells Q8-Q9 and Q10-Q11 as a function of BLT
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Avallable measurements

“DC stability” measurements using inter-layer

guench heaters DP106 as a heat source

“Ramp rate” studies in short models SP106 and

SP107 at 1.9 Kand 4.3 K

“AC loss” measurements in short models
(SP102, SP104, SP105, DP101, SP106,
SP107) and long prototype (MBHPO1)

Measurement of heat transfer in cable stacks

and coll parts (CryoLab)

Measurements of heat transfer in other N
dipole models (e.g. VLHC models at FNA

Measurement of stability in wires and cab
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DC stability
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G. Willering, et al., unpublished data, 2018




Ramp-rate studies
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The “trained” magnet is set at the operating temperature (1.9 K
or 4.3 K) and ramped with constant ramp-rate to quench

AC loss, and possibly other phenomena (eddy currents heating,
current redistribution in case of uneven cable or joint properties)

cause (usually) a reduction of the quench current at increasing
ramp-rate

Knowing the AC loss by independent measurements it is
possible to convert di/dt (A/s) in heating power " (W/m)

G. Willering, et al., unpublished data, 2018




AC loss measurements

Loss per coil. All 4 coils of MBH prototype included - 11T model and proto data at 10- 20 A/s
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The AC loss per cycle, as measured in 11T models and
prototypes, show negligible ramp-rate dependence, which
IS consistent with filament hysteresis being the dominating
mechanism

About 4 W/m (low current) to 2 W/m (high current) are
generated at 10 A/s in a magnet aperture (2 coils)

G. Willering, H. Bajas and S. Izquierdo Bermudez, unpublished data, 2018




Ramp-rate studies implication

Quench current (kA)
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Use the value of 2 W/m at 10 A/s to convert di/dt in AC loss per unit
length

The models show that they can operate stably at nominal conditions
(11850 A, 1.9 K) under a steady state heat load of 50 W/m to 120 W/m

Recall that the power is limited by the cooling capacity of the He bath:
heat removal is limited to about 10 W/m at 1.9 K

G. Willering and S. Izquierdo Bermudez, unpublished data, 2018
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Temperature Increase
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All data avallable, of different origins, are relatively consistent
as to the steady-state heat transfer properties of the coill

The temperature increase can be explained by thermal
conduction across the conductor insulation (fiber-glass/epoxy
composite) with thermal conductivity (0.02...0.04 W/m K) and
thickness (0.2...0.4 mm) consistent with expectations

G. Willering, unpublished data, 2018



Temperature margin and heat removal

From the previous analysis we demonstrate that the 11T
magnet can operate stably at nominal current under a
temperature increase of 2to 3 K

Findings are consistent with the observation that the 11T
magnet reaches nominal operating current of 11850 A at
45K

This corresponds to a total sustainable heat loads of 250
W to 500 W per 5.5 m-long magnet, typically one order of
magnitude larger than the maximum power that can be
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Energy margin (ml/cm?3)
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Expected MBH quench limits (Nb,Sn magnets)
100 mW/cm?3 to 200 mW/cm?3 localized peak loss for steady

state beam losses

20 mJ/cm3 localized peak loss energy for fast beam losses

E. Felcini, unpublished data, 2018




NOTE: energy is intended as peak value as from loss distribution

N bBS N Vs N b_Tl We expect Nb,Sn to be significantly

better (factor 3...5) for steady state loss
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We expect Nb;Sn to be better //

(factor 2) than Nb-Ti for very /
fast events (1...10 us)
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Nb-Ti from B. Auchmann et al., Phys. Rev. ST Accel. Beams, 18, 061002 (2015)

Nb;Sn from E. Felcini, unpublished data, 2018
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Conclusions

From the point of view of operating margin and
stability, MBH meets the requested resilience to
heat load for installation in MBB.B8

Compared to the Nb-Ti counterpart (LHC MB,
kapton insulation scheme), Nb;Sn magnets (I\/IBH
and QXF, glass-fiber/epoxy impregnation) appear
to have superior characteristics:

A factor two more margin against very fast beam losses
(1...10 ps)

A factor three to five more margin against steady
state/collimation beam losses (> 1 s, consistent with
previous studies on VLHC model dipoles at FNAL)
This i1s work In progress, still contains uncertainties
and will require further measurements and
validation on samples, short models, long magnets







