## 11T Magnet Operating Margin

Presented by L. Bottura

With contributions from A. Devred, E. Felcini S. Izquierdo Bermudez, F. Savary, D. Schoerling, R. Van Weelderen, G. Willering



## Scope of this talk

- Focus on the operating margin of the MBH (11T) Nb<sub>3</sub>Sn coil, heat transfer from the coil to the superfluid helium bath and comparison to MB Nb-Ti coil
- Values of heat loads due to collimation loss are provided by HL-LHC WP5, and recently summarized by S. Redaelli and C. Bahamonde, et al. in TCC 54, 2/8/2018
- Analysis of heat transfer in the helium bath in the cold mass was already presented by R. Van Weelderen, et al. in TCC 54, 2/8/2018
- The ultimate and bold goal is to provide the expected quench limits for the MBH (11T) Nb<sub>3</sub>Sn magnets



- Background
- Available measurements on Nb<sub>3</sub>Sn magnets
- Analysis and forecast
- Conclusions



- Background
- Available measurements on Nb<sub>3</sub>Sn magnets
- Analysis and forecast
- Conclusions



# Background – 1/4

B. Auchmann et al., Phys. Rev. ST Accel. Beams, 18, 061002 (2015)



- Present LHC quench limits (Nb-Ti magnets)
  - 20 to 45 mW/cm<sup>3</sup> steady state losses (average over cable cross section)
    - "Measured" 20 to 30 mW/cm<sup>3</sup> at 6.37 TeV, a factor of two lower than the optimistic estimate
- 3 to 10 mJ/cm<sup>3</sup> energy for fast losses (average over cable cross section)



# Background – 2/4

1000

#### L. Bottura et al., Cryogenics, 46, 481-493 (2006)



thermal conductance (W/Km)



Good agreement between multi-strand 1D model of stability and results derived from the quench tests in the LHC!

- It is important to consider the details of the cable strands, geometry, field and heat distributions
- The presence of the interstitial helium leads to a large enhancement of stability
- The transient heat transfer model is a critical matter, especially for fast (1 ms) and ultra-fast (1μs) characteristic times



# Background – 3/4

- Collimation loss expected at MBB.B8 (7 TeV)
  - Values as defined by C. Bahamonde, et al. in TCC 54, 2/8/2018, and previous analyses
  - Local and total loss depend on the assumption on the Beam Life Time (BLT)

|         | BLT =                                         | 1 hour                                                         | BLT = 12 min                            |                                                                  |  |
|---------|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|--|
| Protons | Coil peak:<br>Coil total:<br>Cold mass total: | 2 mW/cm <sup>3</sup><br>11 W (0.2 mW/cm <sup>3</sup> )<br>34 W | Coil peak: Coil total: Cold mass total: | 11 mW/cm <sup>3</sup><br>54 W (1 mW/cm <sup>3</sup> )<br>170 W   |  |
| lons    | Coil peak:<br>Coil total:<br>Cold mass total: | 4 mW/cm <sup>3</sup><br>20 W (0.4 mW/cm <sup>3</sup> )<br>66 W | Coil peak: Coil total: Cold mass total: | 21 mW/cm <sup>3</sup><br>98 W (1.8 mW/cm <sup>3</sup> )<br>330 W |  |

Thermal loads in the 11T magnet in MBB.B8 for different assumptions on the BLT



# Background – 4/4

- Cooling of the cold mass (from coil to HX)
  - Reference values have been given by R. Van Weelderen, et al. in TCC 54, 2/8/2018 for protons and ions and two different hypotheses on the BLT
  - Heat removal from cold mass is OK for BLT=1 hour
  - Temperature will drift for BLT=12 min (the coils will heat nearly adiabatically, beam dumped in 10 s)

|         | BLT = 1 hour                                         | BLT = 12 min                                          |
|---------|------------------------------------------------------|-------------------------------------------------------|
| Protons | Q8-Q9: ∞ (85 W)<br>Q10-Q11: ∞ (8895 W)               | Q8-Q9: 40 mins (333 W)<br>Q10-Q11: 30 mins (348383 W) |
| lons    | Q8-Q9: few hours (120 W) Q10-Q11: 2 hours (162177 W) | Q8-Q9: 20 mins (508 W)<br>Q10-Q11: 10 mins (718793 W) |

Time expected to reach  $T_{\lambda}$  in half cells Q8-Q9 and Q10-Q11 as a function of BLT



- Background
- Available measurements on Nb<sub>3</sub>Sn magnets
- Analysis and forecast
- Conclusions



## Available measurements

- "DC stability" measurements using inter-layer quench heaters DP106 as a heat source
- "Ramp rate" studies in short models SP106 and SP107 at 1.9 K and 4.3 K
- "AC loss" measurements in short models (SP102, SP104, SP105, DP101, SP106, SP107) and long prototype (MBHP01)
- Measurement of heat transfer in cable stacks and coil parts (CryoLab)
- Measurements of heat transfer in other Nb<sub>3</sub>Sn dipole models (e.g. VLHC models at FNAL)
- Measurement of stability in wires and cables



## DC stability



|            |      |                 | power per q      | uadrant          |      |         |       |          |
|------------|------|-----------------|------------------|------------------|------|---------|-------|----------|
| cycle      | coil | Tempera<br>ture | Power-<br>stable | Power-<br>Quench |      | Iquench | Iss   | Iquench/ |
| #          | #    | K               | W/m              | W/m              | W/m  | kA      | kA    | -        |
| 1          | 116  | 4.5             | 5.9              | 5.9              | 5.9  | 11.644  | 13.55 | 0.86     |
| 2          | 117  | 4.5             | 7.7              | 9.7              | 8.7  | 11.5    | 13.55 | 0.85     |
| 3          | 117  | 4.5             | 9.7              | 12               | 10.9 | 11      | 13.55 | 0.81     |
| 4          | 117  | 1.9             | 5.9              | 7.7              | 6.8  | 12.85   | 14.95 | 0.86     |
| 5          | 116  | 1.9             | 12               | 12               | 12   | 12.27   | 14.95 | 0.82     |
| $\epsilon$ | 117  | 1.9             | 10.9             | 11.9             | 11.4 | 11.85   | 14.95 | 0.79     |

The model magnet is powered at constant operating current The inter-later quench heaters is switched-on to provide a steady-state heating

A quench is recorded at a certain value of current and power, providing the operating limit

When running at nominal current (11850 A), the magnet sustains a steady power input of 8x11.4 W/m (90 W/m)

Note that the magnet reaches close to nominal operating current at 4.3 K and can still sustain 8x5.9 W/m (47 W/m)

Recall that the power is limited by the cooling capacity of the He bath: heat removal is limited to about 10 W/m at 1.9 K



## Ramp-rate studies





- The "trained" magnet is set at the operating temperature (1.9 K or 4.3 K) and ramped with constant ramp-rate to quench
- AC loss, and possibly other phenomena (eddy currents heating, current redistribution in case of uneven cable or joint properties) cause (usually) a reduction of the quench current at increasing ramp-rate
- Knowing the AC loss by independent measurements it is possible to convert dl/dt (A/s) in heating power q' (W/m)



## AC loss measurements





- The AC loss per cycle, as measured in 11T models and prototypes, show negligible ramp-rate dependence, which is consistent with filament hysteresis being the dominating mechanism
- About 4 W/m (low current) to 2 W/m (high current) are generated at 10 A/s in a magnet aperture (2 coils)



## Ramp-rate studies implication





- Use the value of 2 W/m at 10 A/s to convert dl/dt in AC loss per unit length
- The models show that they can operate stably at nominal conditions (11850 A, 1.9 K) under a steady state heat load of 50 W/m to 120 W/m
- Recall that the power is limited by the cooling capacity of the He bath: heat removal is limited to about 10 W/m at 1.9 K



- Background
- Available measurements on Nb<sub>3</sub>Sn magnets
- Analysis and forecast
- Conclusions



## Temperature increase



- All data available, of different origins, are relatively consistent as to the steady-state heat transfer properties of the coil
- The temperature increase can be explained by thermal conduction across the conductor insulation (fiber-glass/epoxy composite) with thermal conductivity (0.02...0.04 W/m K) and thickness (0.2...0.4 mm) consistent with expectations



#### Temperature margin and heat removal

- From the previous analysis we demonstrate that the 11T magnet can operate stably at nominal current under a temperature increase of 2 to 3 K
- Findings are consistent with the observation that the 11T magnet reaches nominal operating current of 11850 A at 4.5 K
- This corresponds to a total sustainable heat loads of 250 W to 500 W per 5.5 m-long magnet, typically one order of magnitude larger than the maximum power that can be removed by the proximity cryogenic

  P.P. Granieri, PhD, EPFL, 2012

| Operating temperature           | 1.9 K |
|---------------------------------|-------|
| MB margin (Nb-Ti)               | 1.5 K |
| MBH margin (Nb <sub>3</sub> Sn) | 4.5 K |





# Energy margin ∆E





Mario David Grosso Xavier Private Communication, 2018

- Expected MBH quench limits (Nb<sub>3</sub>Sn magnets)
  - 100 mW/cm³ to 200 mW/cm³ localized peak loss for steady state beam losses
  - 20 mJ/cm<sup>3</sup> localized peak loss energy for fast beam losses



# Nb<sub>3</sub>Sn vs Nb-Ti

We expect Nb<sub>3</sub>Sn to be significantly better (factor 3...5) for steady state loss



Characteristic time [s]



- Background
- Available measurements on Nb<sub>3</sub>Sn magnets
- Analysis and forecast
- Conclusions



## Conclusions

- From the point of view of operating margin and stability, MBH meets the requested resilience to heat load for installation in MBB.B8
- Compared to the Nb-Ti counterpart (LHC MB, kapton insulation scheme), Nb<sub>3</sub>Sn magnets (MBH and QXF, glass-fiber/epoxy impregnation) appear to have superior characteristics:
  - A factor two more margin against very fast beam losses (1 ...10 μs)
  - A factor three to five more margin against steady state/collimation beam losses (> 1 s, consistent with previous studies on VLHC model dipoles at FNAL)
- This is work in progress, still contains uncertainties and will require further measurements and validation on samples, short models, long magnets



