Hollow electron lens tests at RHIC

Hector Garcia-Morales1,2, Daniele Mirarchi2
Stefano Redaelli2, Wolfram Fischer3, Xiaofeng Gu3, Giulio Stancari4

LHC Collimation Team

1 Royal Holloway University of London, Egham, UK
2 CERN, Geneva, Switzerland
3 Brookhaven national Lab, Upton, USA
4 Fermilab, Batavia, USA

October 17, 2018
The LHC collimation system

Figure: LHC layout and collimation system
The LHC collimation system

Figure: LHC multi-stage collimation system
Towards the LHC upgrade

HL-LHC challenges

1. High-intensity beams ($\times 2$ LHC intensity).
2. Stored energy ~ 600 MJ.
3. Significant fraction stored in beam tails\(^1\).
4. Crab cavities failure scenarios\(^2\).

Collimation system upgrade

1. 11 T dipoles and DS collimators.
2. New tertiary collimators.
3. Low impedance secondary collimators.
4. Crystal collimation (session on Fri.).

Why a HEL for HL-LHC?

- If, due to beam jitter, tails are accidentally scraped, a quench may occur.
- Therefore an active control of halo dynamics is required.

\(^1\) P. Racano: Review of halo measurements at LHC with collimator scans (talk on Tuesday)
\(^2\) A. Santamaria: PhD thesis
The hollow electron lens principle

A hollow electron beam circulates in parallel with the main (proton) beam.

Goal

▶ Increase diffusion speed of particles in the tails...
▶ ... without affecting the core.

The kick

\[
\theta_r = \frac{2I_rL(1 \pm \beta_e \beta_p)}{r\beta_e \beta_p c^2 (B_\rho)_p} \frac{1}{4\pi \epsilon_0} \quad (1)
\]

▶ \(I_r\): electron beam current.
▶ \(r\): electron beam radius.

Figure: Hollow electron lens principle
Tevatron tests

- First tests using hollow electron lens for increasing diffusion speed in tails.
- Pulsed 5 keV electron beam acting on a 980 GeV antiproton beam.
- 1-3 T solenoidal field.
- $I_r = 1$ A, $L = 2$ m, $\beta_e = 0.14$, $r = 3$ mm.
- $\theta_r = 0.3 \ \mu$rad.
- 3 trains of 12 proton/antiproton bunches.

Figure: Tevatron hollow electron gun
Tevatron tests

- Luminosity stays constant while intensity is reduced → tail depletion.

Figure: Tevatron hollow e-lens results

\[\text{G. Stancari: Collimation with Hollow Electron Beams, PRL 107, 084802 (2011).}\]
From Chicago to New York: The RHIC electron lens

- Electron lens was installed at RHIC for beam-beam compensation during the proton run in 2015.
- After this run, the electron lens was not used during regular operations.
- A proposal for testing hollow electron lens using the existing hardware (and a new hollow cathod) was made.

Figure: RHIC layout
The RHIC electron lens

- Electron lens was installed at RHIC for beam-beam compensation during the proton run in 2015.
- After this run, the electron lens was not used during regular operations.
- A proposal for testing hollow electron lens using the existing hardware (and a new hollow cathod) was made.

Figure: RHIC e-lens layout
Ramp up of the superconducting magnet.

Electron beam alignment with respect to Ru beam using backscattered e^- detector.

Issues

Cathode bias \rightarrow current fault caused beam to stop.

Ruthenium at 100 GeV.

Electron current scan.

Electron lens radius scan.

Issues

Filling scheme was not correct and bunches were colliding in other IPs.
RHIC tests (2/2)

APEX3 (23.05.2018)

- 6 hours.
- Gold at 13.5 GeV
- 1 T main solnoid field.
- Electron current scan.
- Electron lens radius scan.
- Chromaticity scan.
- Octupole scan.
- Collimator scraping for diffusion measurement.

Issues

- Luminosity only recorded for a few bunches outside the excitation window.

APEX4 (13.06.2018)

- 6 hours (2 hours useful time).
- Gold at 13.5 GeV
- 1 T main solnoid field.
- Chromaticity scan.
- Octupole scan.
- Excitation every n-th turn (1,2,...,12)

Issues

- No beam-beam.
APEX3 Filling scheme

Figure: Example of bunch by bunch loss during the excitation
APEX3 Electron Radius Scan

Figure: Bunch loss as a function of the e-lens gun intensity

During the scan, emittance is shrinking by $\sim 6\%$ in H and $\sim 30\%$ in V.

Figure: Average bunch loss as a function of the e-lens radius
During the scan, emittance is drifting by $\sim -13\%$ in H and $+\sim 3\%$ in V.
APEX3 Nonlinearities: Chromaticity

Figure: Bunch loss as a function of the e-lens current

Figure: Average bunch loss as a function of the vertical chromaticity

\[\Delta \xi_y = -4 \]

\[\Delta \xi_y = -3 \]

\[\Delta \xi_y = -2 \]

\[\Delta \xi_y = -1 \]

\[\Delta \xi_y = 0 \]
APEX2 Radius and Current Scan results4

Figure: Total loss rate as a function of the e-lens radius (D. Mirarchi)

Figure: Total loss rate as a function of the e-lens current (D. Mirarchi)

Conclusions and prospects

- The RHIC electron lens using the hollow cathode was **successfully tested for the first time** for different particle species at different energies.
- The electron beam radius and current was scanned in two different cases. The effect on beam losses observed was as expected.
- In none of the cases luminosity was properly logged. The effect of the e-lens on the beam core cannot be evaluated.
- **Very important results on diffusion speed enhancement were obtained. However, it was not possible to study in detail effects on the beam core. Very important to get more beam time at RHIC.**

Future prospects

- Future tests must ensure that beam-beam is on and luminosity is properly recorded to evaluate the effect of the e-lens in the core distribution.
- Simulations of the e-lens are planned for comparison with the measurements.
We were told the beam was off...