

Characterization of CERN Scandia doped hollow electron gun (CHG-16-sc) at Fermilab electron-lens test stand

G. Gobbi, G. Stancari (FNAL), D. Perini, A. Rossi, A. Kolehmainen With the collaboration of:

D. Crawford, J. Ruan, L. Valerio, A. Valishev (FNAL)

T. Coiffet, S. Redaelli, S. Sadovich (CERN)

Y. Yang, W. Liu, Z. Pan, J. Li, J. Wang, Y. Wang (BJUT)

8th HL-LHC Collaboration Meeting

17/10/2018

Outline

- Introduction
 - Cathode
 - E-gun design development
- Installation of Scandia-doped cathode e-gun (CHG-16-sc) at FNAL
- Tests of Scandia-doped cathode e-gun (CHG-16sc) at FNAL
- Next steps
- Conclusions

Introduction

- Electrons are produced by a cathode installed in an e-gun
- A system of superconducting solenoids cooled at 4.5K generates the magnetic field to tune the size and steer the trajectory of the electron ring

Cathode

- Electron beam generated by hollow cathode
- Thermionic cathode → electron emission T activated

Porous tungsten matrix impregnated with oxides

HEL cathode

Target: minimize cathode dimensions fulfilling the HEL requirements

HEL parameter	
Magnetic field of the main solenoid $\mathbf{B}_{\mathbf{MS}}$	5 T
Magnetic field in the e-gun B _{GS}	0.25 T
Inner radius of hollow electron beam	0.9 mm
Outer radius of hollow electron beam	1.8 mm
Cathode - Anode voltage difference V	10 kV
Current at cathode I	5 A

Performance

Small cathode means high current **density** → material play a key role

- Barium aluminate dispenser \emptyset_0 = 25 mm $J < 2 A/cm^2$
- Scandia doped dispenser \emptyset_0 = 8 mm $J > 20 A/cm^2$

Dimensions

A small cathode allows decreasing the field in main solenoid

$$\frac{R_{beam,cathode}}{R_{beam,MS}} = \sqrt{\frac{B_{MS}}{B_{GS}}}$$

ize field compression factor

$$\mathcal{O}_{o}$$
 = 16.10 m_{m} \mathcal{O}_{i} = 8.05 m_{m} \mathcal{O}_{e} = 3.3 A/c_{m} 2

Scandia-doped cathode

Scandia-doped W cathode

 $\emptyset_{o} = 16.10 \text{ mm}$ $\emptyset_{i} = 8.05 \text{ mm}$

 $J = 3.3 \text{ A/cm}^2$

BVERI (Beijing Vacuum Electronics Research Institute) BJUT (Beijing University of Technology)

Courtesy of BJUT

FNAL e-gun design

Beginning 2017

Manufacturing and tests

June 2018

Know-how development

First e-gun manufactured at CERN (EN-MME workshop)

E-gun design: FNAL → few modifications added (different standards)

HeatWave Labs (US) dispenser cathode $- \mathcal{O}_0 = 25 \text{ mm } \mathcal{O}_i = 12.5 \text{ mm}$

 $P = 6.14 \mu perv \rightarrow 5.5 A @ 10kV$ Successfully tested at FNAL STAINLESS STEEL cathode COPPER CERAMIC TUNGSTEN MOLYBDENUM STAINLESS STEEL STANDARD FASTENERS COMMERCIAL FEEDTHROUGH Mo52.5/Re47.5 FOIL anode control electrode

Scandia-doped cathode in FNAL e-gun design

February 2018

Manufacturing and first tests

October 2018

2

To test HEL size cathode

Second e-gun: design modifications minimized to allow to fit in the HEL nominal dimension cathode

FNAL e-gun design with scaled electrode dimensions

BJUT & BVERI Scandia-doped cathode

E-gun installation at FNAL

- June 5, 2018 → Scandia-doped cathode installed in CHG1b electron gun body at FNAL electron-lens test stand (Coiffet, Gobbi, Stancari and Crawford)
 - CHG1 disassembling insert HEL cathode with scaled electrodes electrical connections e-gun installation in the test stand pump down
- New e-gun assembly → CHG-16-sc (CERN hollow gun, 16 mm diameter, Scandia-doped cathode)

FNAL Test - first objectives

Scandia-doped cathodes first test objectives:

- Small cathode can deliver 5 A needed for HEL?
- Scaled electrode distance and dimensions match perveance of CHG1 e-gun?

G. Gobbi

17/10/2018

Tests at FNAL – first cathode heating

Example of first heating procedure

Possible factors:

- aging of one ion-getter pump -> improved after high-voltage conditioning
- one faulty HV ion-pump controller → replaced
- outgassing of e-gun

Tests at FNAL – first cathode heating

Possible factor:

Outgassing of the e-gun

Tool to minimize cathode contamination during e-gun assembly

Tests at FNAL – first cathode heating

Second and third heating ramps were faster and smoother

G. Gobbi 17/10/2018

13

Tests at FNAL - Yield vs. voltage

At high voltage, cathode still temperature limited → Further conditioning is under way to extend space-charge-limited emission up to 10 kV

Next steps?

- Complete the tests on CHG-16-sc
 - Emission uniformity
 - Profile measurements
 - Long term reproducibility
- E-gun design optimization

Courtesy of G. Stancari – CHG1B 25 mm cathode

Conclusions

- Scandia doped cathode (BVERI & BJUT) for HL-LHC HEL was successfully tested at FNAL
- The first results, 5.2 A at 10 kV, prove that the cathode fulfills the HEL requirements!
- Next tests to measure the profile and to assess the long-term performance of the cathode foreseen for the next months at FNAL

Thank you for your attention

Perveance

Child-Langmuir law:

$$I = PV^{3/2}$$

$$I = JA \quad P = const \cdot \frac{A}{d^2}$$

A cathode aread cathode-anode distance

G. Gobbi 17/10/2018

18

Impregnated tungsten dispenser cathode

It is possible to combine the two favourable properties of tungsten and barium to obtain a cathode with low work function at high temperature.

Produce a Tungsten matrix containing Barium compound.

- Barium Calcium aluminate BaO : CaO : Al₂O₃
- Porous tungsten ρ <0.8 ρ_{theor}

During operation free Barium is 'dispensed'.

$$6 \text{ BaO} + \text{W}$$
 $3 \text{ Ba} + \text{Ba}_3 \text{WO}_6$

The released Barium diffuses to the surface and forms a low work function monolayer.

Impregnated tungsten dispenser cathode

It is possible to combine the two favourable properties of tungsten and barium to obtain a cathode with low work function at high temperature.

Produce a Tungsten matrix containing Barium compound.

- Barium Calcium aluminate BaO : CaO : Al₂O₃
- Porous tungsten ρ <0.8 ρ_{theor}

During operation free Barium is 'dispensed'.

$$6 \text{ BaO} + \text{W}$$
 $3 \text{ Ba} + \text{Ba}_3 \text{WO}_6$

The released Barium diffuses to the surface and forms a low work function monolayer.

G. Gobbi 17/10/2018

21