

HL-LHC 11T Dipole Rack

<u>David Carrillo</u>, Mathieu Favre, Fernando Menendez Camara, Joaquim Mourao, Edward Nowak, Felix Rodriguez Mateos, Grzegorz Seweryn

8th HL-LHC Collaboration Meeting

17th October 2018

CONTENTS

- Introduction
 - Motivation for the upgrade
 - Number of racks and locations
 - Project Interfaces
- Upgrades
 - Rack
 - DQLIM (Interface module)
 - DQHDS units (Heater power supplies)
 - Harnesses
- Deliverables, Schedule & Documentation

MOTIVATION

The 11T cryo-assemblies are going to replace magnets MBA.B8L7 (circuit RB.A67) and MBB.B8R7 (circuit RB.A78)

The protection of the new 11T dipoles will require an increase of heater strips -> increase on the heater power supplies

Reduced room below the cryostats is a significant constraint for this project

MOTIVATION (ii)

	Reason	Consequence
1	Increase of DQHDS per dipole (4 -> 16 units)	Rack needs to be bigger
2	The loss of more than 2 DQHDS might compromise the 11T integrity	DQHDS to be upgraded in order to increase reliability*
3	Upgraded Quench Detectors** will not be installed within the DYPB (located in the RRs)	DQLIM needs to be modified (e.g. it will not include voltage tap wires or QD power supplies)

Upgrade needed during LS2

- Reliability requirements to be presented by D. Sollich
- ** Presented by J. Steckert

NUMBER OF RACKS AND LOCATION

- 16 heater power supplies per 11T dipole cryo-assembly
- → 4 racks in total with 8 heaters power supplies per rack

Many valuable inputs / interfaces

WP7

WP11

Susana Izquierdo

Herve Prin

WP15

EN-EL

TE-MPE-EM

EN-SMM-RME

Alain Antoine

Andrea Apollonio Miriam Blumenschein

Reiner Denz Ludovic Grand-Clement

Surbhi Mundra

Jens Steckert Daniel Sollich

Jan Uythoven

Daniel Wollmann

...

Paolo Fessia Marian Gonzalez

Vincent Chareyre

Raphael Berberat Jean-Marc Wickham Jeremy Kuhn Maxime Ricci William Billereau

Salvatore Danzeca Jerome Lendaro Chiara Cangialosi Gilles Foucard

STATUS OF THE UPGRADES

RACK - MECHANICS

DQLIM UPGRADE

The new interface module will contain a great variety of modifications with respect to the current design for both dipoles and quadrupoles

- Voltage taps will be routed directly from the IFS boxes to the quench detection system located in the RRs
- DQLIM power box to supply DQHDS with both F3 and F4 (redundancy)
- Switches on the front side to turn on/off the eight DQHDS
- For maintenance purposes, the current transformers will be installed inside the DQHDS

DQLIM UPGRADE (ii)

Having a two-boxed interface module provides the following advantages with respect to one-boxed one:

- There is a central corridor in the layout of the rack allocating a bigger room for positioning and connecting cables properly
- Segregation between mains wires and heater discharge circuits

 Improves the maintainability (dedicated study in labelling to be performed at a later stage of the project)

DQHDS UPGRADE

Due to the wide set of requirements to be met, the following modifications will be implemented:

- Redundant powering
- The current transformers will be installed in the heater power supply
- Addition of relays in the internal discharge circuit for safety
- Addition of a voltage indicator

To be reused: Capacitors, frames from DQHDS spares, thyristors, some connectors

New: PCB, current transformers, front and rear side panels...

DQHDS UPGRADE (ii)

Irradiation campaign of DQHDS

- Partial side of the rack will be exposed to a radiation up to 400-500 Gy
- Component level tests in PSI up to 500 Gy (EN-SMM-RME)
 - Optocouplers to replace triggering relay (will not be used in the end) (edms reports: 2002397, 2002401, 2002403)
 - Regulator/transistors (edms reports: 2011367, 2029282)
 - · Thyristors to be tested
- System level test in CHARM up to 500
 Gy
 - DQHDS had a detectable failure (safer for LHC) at ~ 420 Gy and at ~470 Gy
 - Cause of failure yet unknown
- A strategy of replacement or exchange might be put in place during HL-LHC

CABLING

RRs Racks 11T Dipole

DELIVERABLES, SCHEDULE & DOCUMENTATION

Deliverables

- 4 racks + 1 spare
- 4 DQLIM units + 1 spare
- 32 current transformers + 8 spares
- 32 DQHDS (upgraded) + 8 spares (upgraded)
- Harnesses

Schedule & Milestones

Milestone	Description Deadline		
N.4.1	Conceptual design phase: Definitions and	lum 2010	
M1	functional requirements of the supply	Jun 2018	
142	Prototype design, procurement and	December 2018	
M2	manufacturing		
142	Prototype testing and validation, incl. test	January 2019	
M3	equipment		
M4	Final design specifications and orders placement	March 2019	
M5	Reception tests, validation, QA	September 2019	
M6	Installation LS2	July 2020	

Documentation

CERN CH-1211 Geneva 23

Date: 2018-06-18

PROJECT MANAGEMENT DOCUMENT

DYPB racks in HL-LHC 11T Dipole Magnets PROJECT ROADMAP & MANAGEMENT PLAN

ABSTRAC

In order to assure the maintainability and optimize the limited available space below the LHC magnet cryostats, the TE-MPE group needs to upgrade the local protection racks type DVPB for the integration of the HL-LHC 117 Dipole Magnets into the present LHC machine. The present document serves as a roadmap and management plan for the DVPB racks for the HL-HLC 117 Dipole Magnets project.

DOCUMENT PREPARED BY:	DOCUMENT TO BE CHECKED BY:	DOCUMENT TO BE APPROVED BY:
F. Menendez	TE-MPE Steering Board	Andrzej Siępyko
	D. Carrillo	on the behalf of the
	J. Mourao	TE-MPE Steering Board
	E. Nowak	
	D. Wollmann	
	DOCUMENT SENT FOR INFORMATION TO:	

This document is uncontrolled when printed. Check the EDMS to verify that this is the correct version before use.

Distribution: TE-MPE-EE & TE-MPE-EP

CONCEPTUAL DESIGN REPORT

11T DIPOLE PROTECTION RACKS

Abstract

Protection of the NbSn_11T dipole magnets that will replace one standard arc dipole magnet in the dispersion suppressor regions of RI will require a higher number of quench heater strips, while at the same time assuring the maintainability and optimize the limited available space below the LHC magnet cryostast. For these reasons, the TE-MFE group needs to upgrade the local protection racks type DVPB for the integration of the HL-HIC 11T Dipole Magnets into the present LHC machine.

This document details the conceptual design of the different parts of a 11T dipole protection rack, which includes upgraded heater power supply units, the interface module, mechanics and cabling.

Conceptual design

TRACEABILITY Prepared by: D. Carrillo, F. Menendez Camara, J. Mourao, E. Nowak Date: 2018-06-29 Verified by: MFE-Steering board, D. Wollmann, S. Itzulierdo Date: 20Y1-MM-DD Approved by A. Siemko Dete: 20Y1-MM-DD

Rev. No. Date		Description of Changes (major changes only, minor changes in EDMS		
0.1	11-07-2018	First version for circulation within TE-MPE		

Thank you very much for your attention

Rack dimensions

Harnesses

Cable	Function	From	То	Connectors
PH3SJ	Powering (internal)	DQLIM (Powering box)	DQHDS	VDE and IEC connectors
PH2SB	Discharge (internal)	DQHDS	DQLIM (discharge box)	Amphenol socapex serie S 61 connector
NE8	U_HDS, I_HDS, Trigger	DQHDS	QDSU	Harting HAN Module 8
PJ5SJ	Discharge (external)	DQLIM (discharge box)	IFS	Harting Q5 (HAN E)
NE6	IFS discharge connection	DQLIM (discharge box)	QDSU	Harting HAN Module 6
PJ3SJ	Powering (external)	Electrical box (circuit breakers)	DQLIM (powering box)	VDE

