

Detection electronics results from SM18 - 11T prototype tests

Ernesto De Matteis

Acknowledgements:

D. Blasco Serrano, R. Denz, S. Georgakakis, S. Haas, J. Spasic, J. Steckert & TE-MPE-EP colleagues

Thanks to G. Willering, F. Mangiarotti, M. Duda & SM18 crew for SM18 tests Thanks to S. Yammine and J. Chailleux from EPC group.

Topics

- HL-LHC magnets
- Why a dedicated quench detection system
- Multiple approach system
- Universal Quench Detection System
- SM18 Tests 11T MBH magnet
- Ongoing activities
- Conclusions

HL-LHC magnets

- High Lumonisity upgrade:
 - Novel large aperture <u>Nb₃Sn</u> dipole and quadrupole magnets;
 - new variety of <u>NbTi</u> magnets will be used for the nested orbit correctors (sextupole, octupole, etc..);
 - new superconducting link based on <u>MgB</u>₂ for the magnet powering

Why a dedicated quench detection system

• The Nb₃Sn-based magnets show voltage spikes at low field due to the flux jumps on the superconductor.

• The amplitude and duration of these spikes is larger wrt the baseline protection settings (100 mV, 10 ms).

Multiple Approach System

- Quench Detection for HL magnets should cover different needs:
 - Fluxjumps (11T MBH and IT MQXF magnets)
 - Classical evaluation window (100 mV; 10 ms) not applicable;
 - Asymmetric aperture magnets (CCT MCBRDP)
 - Symmetric Aperture magnets
 - Symmetric Quenches

Universal Quench Detection System

Universal Quench Detection System (uQDS)

Parameter	Value
Resolution (20-bit ADC)	95nV/LSB 43uV/LSB
ADC speed	Up to 1Msp/s
Analogue bandwidth/ gain	125kHz @ G=1 90kHz @ G=9 50kHz @ G=45 7kHz @ G=450
Active input voltage range	+/-50mV 22.5V
Max differential input voltage	1kV/1s
Galvanic insulation	2.5kV/20min

- Based on IGLOO2 (M2GL150)
- Supports up to 16 front-ends via mid-plane
- Communication via RS485,
 USB 2.0, USB 3.0 or WorldFIP
- → First prototype for 11T QDS

J. Steckert, "Status of detection electronics for 11T protection including trim protection" talk

uQDS: system overview

uQDS: Front-end channel

- Challenging design (20bit/1Msps)
- Several prototypes built and evaluated in LHC and SM18
- Serves as universal QDS data acquisition channel
- Covers all existing quench detector requirements

SM18 Tests: Study and validation phase

- Following 11T Nb₃Sn magnet development by "testing" uQDS on the new magnets:
 - Study flux-jumps, mechanical oscillations, etc.
 - Estimate what level of filtering is necessary
 - 11T short models: single aperture MBHSP105, 107 and double aperture MBHDP102
 - 11T MBH prototype
- QDS validation:
 - Preparation of the firmware 11T MBH detection system

11T MBH prototype – Measurement setup

uQDS 2.0 used as data acquisition system

First Nb₃Sn magnet on the SM18 horizontal bench

G. Willering, "MBH prototype test report"- August 2018

11T MBH prototype – Post-processing

- Sampling rate of 500ksps, raw data transmitted via USB2.0
- Signal processing offline:
 - 10us width median filter
 - 50 kHz 10th order Bessel low-pass
 - Decimation by 5

Post-processed signals

$$UAp1 = U (D1_U) - U (D1_L)$$

$$UAp2 = U (D2_U) - U (D2_L)$$

Compensated signals used for the quench detection

11T MBH prototype – Phase study

• Quench at 8.4 kA

11T MBH prototype – Results

Fluxjumps over the (100 mV; 10 ms)

Risk of fake quench (unwanted effect in the LHC)

Dynamic threshold in amplitude and time to avoid detection trouble due to fluxjumps

$$(U_{TH}, \Delta t_{TH})(I) =$$

$$= \begin{cases} (2V, 10 \ ms) \ 0 < I < 80 \ A \\ (200 \ mV, 10 \ ms) \ 80 \ A < I < 6 \ kA \\ (100 \ mV, 10 \ ms) \ I > 6 \ kA \end{cases}$$

11T MBH prototype – FJs QD analysis

Standard discrimination window analysis (100 mV, 10 ms)

Peak [V]	Time Loc. [s]		
0.106	215.43		
0.121	224.00		
0.115	254.51		

The compensated signal of the Ap2 trip three times

With Ap1 without trips

General method to find a configuration for the dynamic threshold $(U_{TH}, \Delta t_{TH})(I)$

Magnet		Current range	$(\mathrm{U}_{\mathrm{TH}},\Delta\mathrm{t}_{\mathrm{TH}})$	# trips
MBHDP102	Ap1	0-6 kA	(100 mV, 10 ms)	4
	Ap2	0-6 kA		0
MBHSP10	7	0 – 6 kA	(100 mV, 10 ms)	0

Depending on the magnet training

Each magnet is a different story!!

11T MBH prototype – Results

Mechanical oscillations at about 10-15 kHz

A Median filter of 50 us could be a solution (2-3 samples with a sampling rate of 50 kHz) Moving average filter of 10 samples Both easy to implement on the FPGA

Customized filtering:

- Median or moving average to remove the power converter noise and attenuate the oscillation effect.

11T MBH prototype – Results

Other studies

Emulation of the Logics for the Quench Detection (implemented on the FPGA)

Trigger Verification (timing)

Ongoing Activities

- Validation of the uQDS on the 11T MBH prototype
 - Preparation of the uQDS:
 - Test procedure to qualify the uQDS in the lab (Hardware, and Firmware)
 - Preliminary tests on the CLIC Wiggler magnet
 - Quench Detection Tests on the 11T MBH prototype during the next run
- QDS for CCT MCBRDP prototype (two asymmetric apertures)
 - Validation of the QDS scheme as done on the short model MCBRDS1b

Conclusions

- QDS study phase is continuing (next 11T magnets)
- On-field verification of the uQDS (as Data acquisition)
- A preliminary configuration for the quench detection scheme was fixed:
 - Dynamic threshold (fluxjumps) and relate method
 - Customized filtering and low pass decimation (noise and oscillations)
- uQDS validation is ongoing (next run for the 11T MBH)

