

Supervision interface of the 11 T protection electronics

Tomasz Podzorny, TE-MPE-EP on behalf of TE-MPE

8th HL-LHC Collaboration Meeting, Geneva, 15-18 October 2018

Contents

- I. Supervision and data acquisition
- II. Scope of HiLumi activities
- III. Protection concepts for new installations
- IV. Available technology solutions
- V. Supervision architecture
- VI. Protection of 11 T dipole
- VII. Insight into supervision of inner triplet

Supervision and data acquisition

Main functionalities:

- Logging of signals from protected circuit
- Logging of signals from detection devices
- Provide signals used by software interlocks
- Record post mortem data
- Provide remote diagnostics

Systems involved:

- Quench protection hardware
- Fieldbus infrastructure
- Frontend computers
- Supervision, data acquisition and archive servers

Scope of HiLumi activities

LS2 – 11 T Dipole

Highly advanced activities:

- Hardware is being finalized
- Interface to supervision declared
- Real time application renovation is ongoing

New features are introduced:

- General improvements
- No major changes

LS3 – Inner Triplet

Initial stage:

- Baseline is current 11 T development
- Considerably higher data load
- Logging time resolution to be improved

Expected changes:

- High throughput fieldbus
- High resolution logging
- Evolution of supervision system to accommodate different data nodes

Protection concepts for new installations

Enhanced redundancy level

- Redundant crates replaces redundant boards concept
- Equipment visible as separate unit in supervisory control and data acquisition
 - No data toggling
 - Facilitates automatic analysis of state of health of the units
- Provides better separation and enhances availability of the supervision

Protection concepts for new installations

Command interface – parametric commands

- Enable to perform accurately timed sequences on a crate controller level
- Downstream data resolution is significantly increased
- Enable firmware updates

Data logging

- Protection configuration continuously logged
- High definition logging can be introduced on a real time (RT) application level
- Generic supervisory control and data acquisition (SCADA) for low frequency control and supervision activities

Post mortem (PM) data – separated data sources

- Increases data availability
- Decrease of PM data acquisition time concurrent processes

Fault recovery

Separation enables implementation of automatic fault recovery in the RT

Technology solutions

Crate controller – fieldbus controller

- Local high speed communication to quench detection unit
- Based on Alstom WorldFip
- Migration possible to nanoFip or Ethernet based fieldbuses

Crate controller – local data management

Adaptation possible if higher amount of data processing is required

Technology solutions

Frontend computers (FEC)

- Run fieldbus masters by specialized hardware
- Provide synchronization
- CC7 64 bit operating system
- No major changes expected in respect to hardware
- Real time application
- Support for an early UQDS agents has been already implemented
- RDA3 (remote device access) for upper layer supervision is validated
- Real time application supports CERN MFIP fieldbus master
- A general refactoring and renovation aimed on improving code quality and performance of the real time application is ongoing

Supervision architecture

Supervision architecture – high definition data

LHC PROJEC

Protection structure of 11 T dipole

L-LHC PROJEC

Data structure of single UQDS unit

Signal	Origin	Width
8 coils voltages	Measured	32 bit
1 magnet voltage	Measured	32 bit
1 circuit current	Measured	32 bit
4 coil quench voltages	Calculated, QD	16 bit
2 aperture symetric voltages	Calculated, QD	16 bit
2 bus-bars voltages	Calculated, QD	16 bit
Several interlocking status signals	Digital status	1 bit
Several internal status signals	Digital status	1 bit
3 configuration integrity signals	Digital word	8 bit

Data structure of HDS supervision unit

13

 $\{U_{HDS}, I_{HDS}\}$

Data structure of Trim circuit supervision unit

Signal type	Origin	Width
4 lead voltages (redundant A)	Measured	16 bit
4 lead voltages (redundant B)	Measured	16 bit
4 lead currents	Mesaured	16 bit
2 x 2 current balance signals	Calculated, QD	16 bit
2 x 4 tresholds on voltage leads	Calculated, QD	16 bit
Interlocking status signals	Digital status	1 bit
Internal status signals	Digital status	1 bit

Insight into supervision of inner triplet

Baseline:

- Inner triplet instrumentation is demanding
 - Definition of triggering signals is pending – depends on an outcome of magnet tests
- Superconducting links need protection
- 48 HDS units to supervise
- 6 CLIQ units likely to supervise

Insight into supervision of inner triplet

Signal type	Redundancy	Number of Vtaps	Channels
Pole voltage	А	48	24
Pole voltage	В	48	24
Bus-bar voltage	А	20	10
Bus-bar voltage	В	20	10
Corrector voltage	А	12	8
Corrector voltage	В	12	8
Corrector bus-bar	А	8	8
Corrector bus-bar	В	8	8
Total		176	100

Conclusions

Supervision of 11 T dipole protection will be ensured by ongoing evolution of the LHC/QPS system

- Data availability improvement
- Continuous configuration validation
- Simplified fault recovery
- Supervision of inner triplet will be a natural evolution of the system
- More devices required to ensure protection of the circuit
- Considerable data load
- New fieldbus and data processing solutions to be implemented

Thank you for your attention

Acknowledgments to many members of TE-MPE and BE-ICS groups

T. Podzorny – Supervision interface of the 11 T protection electronics