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Outline

 Do we see it?
 ...yes!

 Do we understand what we see? 
 Assumptions

 Optics sensitivity LHC v.s. HL-LHC

 Trying to quantify the amplitude of the effect we see

 What can we say about HL-LHC?

 Summary
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Main Events Overview (M. Schaumann)
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Fill 6757 Fill 6919

• Same scales on all plots

• Fill 6757 higher excitation amplitude 

 stronger effect on beams

 higher losses, deeper luminosity dips, higher vertical RMS orbit

BLM Losses

Vertical RMS ring Orbit

Luminosity

Ground motion

(4/06/2018) (13/07/2018)

From: Observation on HL-LHC CE vibration on the beam, M. Schaumann (link) 

Beta* levelling steps 

and new orbit reference

https://indico.cern.ch/event/750340/contributions/3105614/


Optics sensitivity: assumptions

 Interested in frequencies (f) above a few Hz
 Normally no spatial correlation

 Not interested in strong single event, e.g. earthquakes, which can carry 
strong correlation

 Motion normally not caught by present orbit feedback

 Assuming all perturbations induce simply a closed orbit variation 
 i.e. considering only f << frev

 Uncorrelated ground motion distributed along the whole machine 
with equal amplitude
 main players are the triplets in IP1/5

 Beam/optics parameters
 LHC: εN =    2 µm; 6.5 TeV; β* = 30 cm

 HL-LHC: εN = 2.5 µm; 7 TeV; β* = 15 cm
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Impact of quad misalignment on closed orbit

 Expected B1 closed orbit variation at IP5:
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 HL-LHC @15cm very similar to present LHC @30 cm

Q3 Q1Q2aQ2b

Triplet contributions

Arc contributions



Possible beam observables
 Luminosity

 Probably the most sensitive observable. 

 Beam intensity
 Very high dynamic range due to intensity variation along fill

 More interesting to look at BLM-computed integrated losses
 Very sensitive signal!

 BPMs
 Position acquired at 25 Hz, but available only as mean over 1 s

 Not suitable for vibrations of f > a few Hz

 The rms over 25Hz data is logged in Timber
 Suitable to look at oscillations of a few Hz

 DOROS BPMs 
 Could acquire at much higher frequency, but also normally logging average 

over 1 s

 Logging of spectra requested by Michaela, will happen soon

 BBQ
 A lot of spectra, not amplitude calibrated.

 Not very sensitive during standard operation

 ADT
 Spectra being logged since a few months.

 Rough amplitude calibration available

6



Luminosity [1]
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[1] Concept of Luminosity, W. Herr and B. Muratori, (CERN-2006-002)

Reduction due to offset (e.g. horizontal -- x) 

Reduction due to offset AND angle in 

the same (e.g. horizontal -- x) plane

Reduction due to crossing angle

Reduction due to Hour Glass effect

For LHC: we can estimate that the effect of 

crossing angle variation is comparable to offset

For HL-LHC: in the limit of ideal full crabbing, is 

equivalent to head on collision, i.e. equivalence 

between crossing and separation plane



Summary: impact on observables
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Luminosity loss [%] 1 10 ~2

LHC HL-LHC LHC HL-LHC HL-LHC

Orbit sep. IP1/5 [σbeam] 0.2 0.7 0.3

Necessary quad. motion rms [μm] 0.3 0.2 0.9 0.7 0.3

rms orbit @TCP* [σbeam] 0.1 0.1 0.4 0.4 0.2

rms orbit @BPM* [μm] ~50 ~50 ~240 ~240 ~120

 Numbers computed assuming IP1/5 triplet only source of perturbation.

 Assuming both IP triplets oscillate by the same rms amplitude in one plane only.

 If only one triplet oscillates => sqrt(2) more quadrupole motion needed to give 

same effect.

 A reasonable threshold is 1% instantaneous luminosity loss, which correspond 

to about 0.3 (LHC) or 0.2 (HL-LHC) μm triplets motion.

 An event causing 1% instantaneous luminosity loss in LHC would cause a 2%

luminosity loss in HL-LHC

* Considering the most sensitive TCP/BPM/plane



Observables of ground motion

 15 May 2018: Official start of HL-LHC excavation works.

 2018 run is the occasion to see perturbation on the beam due to ground motion

 It could allow us to see if our expectations for HL-LHC are correct.

9M. Guinchard, Oct. 2017 link

 Geophones are logging data since 2017

 Data logged into Timber in the form of PSD

https://indico.cern.ch/event/672364/contributions/2750548/
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Integrated PSD: 2017 vs 2018 (P5)

 PSDs integrated over range of frequencies

 Gives measured rms motion in that band

 Possible to see human activity in band 3-10Hz and above

 Some higher activity (starting in Oct. 2017 – not in the plot)

 No obvious sign of civil engineering works started in May 2018

2017Vertical 2018Vertical



Ground motion amplification
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 LHC: measured on Q1 spare assembly in SM18  (M. Guinchard, Oct 2017, link)

 HL-LHC: simulated (1% damping) by D. Ramos and M. Martos

 The triplet quadrupole assembly can amplify (or damp) the ground motion: 

VERTICALHORIZONTAL

https://indico.cern.ch/event/672364/contributions/2750543/attachments/1541246/2417043/HL_LHC_CE_Overview.pdf
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Integrated Amplified (LHC) PSD: 2017 vs 2018 (P5)

2017 2018

 PSD amplified and integrated (f > 3Hz)

Vertical Vertical

 The 20-40 Hz band is dominant

 2017: relatively quiet, far from 1% lumi threshold

 2018: some dangerous spikes

about 1% 

luminosity loss 

expected



“Interesting” fills

 Alarm system set up by M.Guinchard and L.G.Scislo (EN-MME) 
on geophones to eventually stop the excavation works.

 Fills with beam that could have been affected by Ground Motion:

 Point 1
 30/05/18: 13:00 -> fill 6741 (very small GM excitation)

 01/06/18: 08:00-13:00 -> fill 6749 -> considered

 10/09/18:   6:30-7:00 -> fill 7145 (very small GM excitation)

 Point 5 
 11/10/17: around 8:00 fill 6291 (a few small spikes only)

 19/10/17: around 8:00  -> fill 6308 -> considered

 20/10/17: around 9:00  -> fill 6311 -> considered

 04/06/18: 08:11 -> Fill 6757 -> considered

 13/07/18: Day -> Fill 6919 -> considered

 30/08/18: 5:50-13:20 -> Fill 7105 (very small GM excitation)

 03/09/18: 7:00 - 7:25 -> Fill 7122 -> considered

 04/09/18: 6:43 - 7:10 -> Fill 7124 (very small GM excitation)
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Fill 6757 P1/P5 Amplified – LHC
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P1 - Horizontal P1 - Vertical

P5 - Vertical
P5 - Horizontal



Fill 6757 impact on luminosity
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 Luminosity dips compatible with expectation from ground 
motion measured, amplified, converted into orbit separation at IPs

 ATLAS much less sensitive to vertical ground motion generated 
next to CMS



Fill 6757 impact on orbit @BPMs
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 BPM system logs data at 1 Hz, but it also provides the rms
computed over 25 Hz data.

 Vertical rms orbit compatible with expectations

 It looks like we are over-estimating the horizontal motion
 Possible discrepancy in the quadrupole transfer function?



Fill 6757 impact on orbit @ADT

17

 ADT data logged as spectra

 Integrating over band 3-100 Hz 

we get similar matching with 

expectation as for the BPMs

 Still “off” in horizontal



Fill 6757 impact on beam losses @TCP

 Losses of the order of a few 10-5 wrt beam intensity.
 Difficult to translate losses into orbit variation at collimators

 From ground motion, we would expect 20-30 um orbit jitter wrt
to total aperture of TCP (2.7 mm H; 2 mm V)
 If correct, losses compatible with over-population of tails wrt simple 

Gaussian
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Expected orbit @ TCP

Measured 

relative losses



Summary of observations
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Fill # Obs. V GM rms [µm] Lumi loss [%]
Losses

[1e-5]
Orbit [um]

P1 P5 P1 P5 TCP TCP ARC BPMs ADT pickup

Obs. Obs. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.

6308 <0.1 0.2 <0.1 0.1 0.4 0.2 0.2 9 20 20 20 10

6311 <0.1 0.3 0.2 0.3 1 1 0.5 15 50 40 25 15

6749 0.8 <0.1 <0.1 1 0.2 1.5 0.8 30 25 100 20 20

6757 (1) <0.1 0.6 0.5 0.5 3 3 3 20 80 70 60 30

6757 (2) <0.1 0.4 0.4 0.3 6 2 4 20 70 50 70 20

7122 <0.1 0.4 0.3 0.3 1.5 1.5 1 20 50 50 60 20

 Fill 6749 is the only affected by ground motion in P1, but is also the one “less 

predictable”: impact smaller than expected.

 Predictions on luminosity drops and orbit at BPMs well within a factor 2

 Prediction on orbit at ADT seems to be a factor 2 off

 Information from this morning: factor 2 in the data published in Timber…

 Looking (by eye => very rough estimates) at different fills (see appendix)



2018: LHC vs HL-LHC
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LHC - Vertical HL-LHC - Vertical

 HL-LHC slightly more sensitive, but triplet more forgiving (on paper!)

 Very important to measure the transfer function of the new triplet 

quadrupoles:

 A factor 2 would be enough to show ground motion into the beam

 Plan to measure a main dipole in 2019, then the first quad prototype 

as soon as it is available.



Conclusions

 HL-LHC civil engineering showed up in LHC…

 From July 2018, 11 days with multiple alarms linked to surface activity 

[M.Guinchard]

 Events caused luminosity dips of the order of a few %, mainly at CMS.

 Hardly noticeable for typical LHC operation

 The ground motion sensors + transfer function measurements + 

optics simulation allow to understand the observations

 Actual LHC is very close to HL-LHC in terms of optics sensitivity

 Still, main players remain the IP1/5 triplets.

 Estimated triplet transfer function seems to be a bit more forgiving that 

present triplet

 Important to verify the transfer function estimate on actual 

hardware.
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- Thanks for your attention and comments -



Appendix
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From losses to orbit at TCP?!
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From: Review of halo measurements at LHC with collimator scans, P. Racano(link) 

https://indico.cern.ch/event/763571/contributions/3169215/


From losses to orbit at TCP?!
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From: Results of the beam diffusion measurements in the LHC at 6.5TeV, A. Gorzawski (link) 

https://indico.cern.ch/event/757667/contributions/3175935/


GM and Beam Spectrum Evolution
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Fill 6757 (June) Fill 6919 (July)

22Hz

21Hz

25Hz

30Hz

13Hz

23Hz
41Hz

46Hz

Geophone

ADT B1V

22Hz

21Hz

25Hz

30Hz

23Hz
41Hz

46Hz

From: Observation on HL-LHC CE vibration on the beam, M. Schaumann (link) 

https://indico.cern.ch/event/750340/contributions/3105614/


Beam Separation at IP1/5 due to Quadrupole Offset
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Vertical

Vertical offset of triplet 

in IP5 introduces a 

larger orbit effect in the 

IP5 compared to IP1 

and vice versa

Horizontal

Horizontal offset of triplet 

in IP1/5 introduces a 

similar orbit effect in the 

both IPs.

Assumption: 

30cm optics, 2um emittance

From: Observation on HL-LHC CE vibration on the beam, M. Schaumann (link) 

https://indico.cern.ch/event/750340/contributions/3105614/


Note: correlated IR motion

 Impact of a wave propagating along the local IR1 or remote IR5 on 

IP1 orbit separation: amplification factor as a function of λ
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 Typical wave speed measured in the CERN tunnels:

 990 m/s (shear); 2200 m/s (pressure)

 f below a few Hz (most likely f to be correlated) have “small” 

amplification factor w.r.t. fully uncorrelated case.

HL-LHC Uncorr.

LHC Uncorr.

From 119th WP2 meeting (link) - sqrt(2) factor missing everywhere 

https://indico.cern.ch/event/722413/contributions/2970370/


Impact on Tune
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 Impact of the orbit induced by 1 um offset of each triplet (P5) 

element on Tune – LHC case



Detailed appendix
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Optics sensitivity tables and plots
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Optics sensitivity tables
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 Amplification factors from magnet motion to IP orbit separation

IP1 

[σ*beam/µm]

IP5 

[σ*beam/µm]

IP2

[σ*beam/µm]

IP8

[σ*beam/µm]

Δx Δy Δx Δy Δx Δy Δx Δy

LHC all quads 0.783 0.616 0.771 0.621 0.338 0.354 0.425 0.516

LHC IR1/5 only 0.754 0.587 0.753 0.587 0.176 0.184 0.251 0.403

LHC IR5 only 0.506 0.180 0.559 0.559 0.041 0.139 0.147 0.146

HL-LHC all quads 1.054 1.063 1.051 1.059 0.392 0.515 0.499 0.832

HL-LHC IR1/5 only 1.028 1.033 1.029 1.031 0.309 0.464 0.344 0.771

HL-LHC IR5 only 0.755 0.762 0.696 0.697 0.276 0.376 0.255 0.527

sqrt(2) bigger than WRONG values presented at early WP2 meetings (link) 

 If we consider only one triplet we should get a sqrt(2) smaller impact, 

with the exception of the vertical plane in LHC where the “remote” 

impact is smaller.

https://indico.cern.ch/event/722413/contributions/2970370/


Optics sensitivity tables
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 Amplification factors from magnet motion to IP half/crossing variation

IP1 

[µrad/µm]

IP5 

[µrad/µm]

IP2

[µrad/µm]

IP8

[µrad/µm]

Δθx/2 Δθy/2 Δθx/2 Δθy/2 Δθx/2 Δθy/2 Δθx/2 Δθy/2

LHC all quads 9.09 10.98 8.73 11.45 1.14 0.86 2.42 3.27

LHC IR1/5 only 8.38 10.67 8.38 10.68 0.67 0.49 1.87 2.96

LHC IR5 only 6.04 9.19 5.81 5.42 0.38 0.33 0.84 2.70

HL-LHC all quads 14.46 13.15 13.99 13.11 1.25 1.18 7.69 5.05

HL-LHC IR1/5 only 13.43 12.50 13.34 12.61 0.88 0.89 3.42 1.70

HL-LHC IR5 only 7.51 6.97 11.11 10.39 0.69 0.61 1.91 0.95

IR1/5 triplets 

not main source
Impact on angle is 

preferentially local



Optics sensitivity tables
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 Impact at primary collimators (max rms orbit at any TCP)

B1 B2

[σbeam/µm] [µm/µm] [σbeam/µm] [µm/µm]

Δx Δy Δx Δy Δx Δy Δx Δy

LHC all quads 0.432 0.384 93 60 0.492 0.376 105 60

LHC IR1/5 only 0.386 0.343 83 53 0.462 0.325 98 52

LHC IR5 only 0.243 0.323 52 51 0.344 0.226 73 34

HL-LHC all quads 0.519 0.492 120 84 0.611 0.202 140 33

HL-LHC IR1/5 only 0.476 0.449 110 77 0.575 0.132 131 21

HL-LHC IR5 only 0.274 0.327 63 56 0.409 0.132 93 21

Single triplet has “same” impact than 

both triplets… => asymmetry



Optics sensitivity tables (LHC only)
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B1 [µm/µm] B2 [µm/µm]

Δx (BPM) Δy (BPM) Δx (BPM) Δy (BPM)

LHC all quads 122 (6L7) 198 (5R5) 128 (6R7) 170 (5L1)

LHC IR1/5 only 111 (6L7) 181 (5R5) 119 (6R7) 152 (5L1)

LHC IR5 only 78 (11R7)

72 (6L7)

140 (5R1)

92 (5R5)

30 (11R5)

96 (6L2)

90 (6R7)

120 (5L1)

31 (11L5)

 Impact at “arc” BPMs (most sensitive BPM location in parenthesis)

 Impact at Q1 IP1/5 BPMs (most sensitive location in parenthesis)

B1 [µm/µm] B2 [µm/µm]

Δx Δy Δx Δy

LHC all quads 183 (1L5) 287 (1R1) 263 (1R1) 252 (1R5)

LHC IR1/5 only 150 (1L5) 256 (1R1) 232 (1R1) 219 (1R5)

LHC IR5 only 129 (1L5) 226 (1R1) 194 (1R1) 183 (1L1)

119 (1R5)



Optics sensitivity tables (LHC only)
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 Impact at ADT pickup (pickup location in parenthesis)

B1 [µm/µm] B2 [µm/µm]

Δx (7L4) Δy (7R4) Δx (7R4) Δy (7L4)

LHC all quads 45 69 69 73

LHC IR1/5 only 37 61 61 63

LHC IR5 only 23 57 56 56



Impact of quad misalignment on closed orbit

 Expected B1 closed orbit variation at IP5:
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 HL-LHC @15cm very similar to present LHC @30 cm

Q3 Q1Q2aQ2b

Triplet contributions

Arc contributions



Impact of quad misalignment on closed orbit

 Expected B1 closed orbit (angle) variation at IP5:
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 HL-LHC up to x2 more sensitivity to than LHC to be expected

Q3 Q1Q2aQ2b

LHC

HL-LHC



LHC: impact of misalignments on Δx
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LHC: impact of misalignments on Δx’ 
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LHC: impact of misalignments on Δy
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LHC: impact of misalignments on Δy’ 
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Luminosity
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Luminosity [1]
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[1] Concept of Luminosity, W. Herr and B. Muratori, (CERN-2006-002)

Reduction due to offset (e.g. horizontal -- x) 

Reduction due to offset AND angle in 

the same (e.g. horizontal -- x) plane

Reduction due to crossing angle

Reduction due to Hour Glass effect



Instantaneous* luminosity reduction - offset 

44

Factor due to “static” orbit separation (d2-d1)

Factor due to “dynamic” orbit separation σd

i.e. assuming beam separation is oscillating 

around zero.

* Instantaneous compared to LHC fill, integrated compared to revolution frequency

=> Static ≈ dynamic for small amplitudes



Luminosity reduction factors
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LHC (Design 

Report) [1]

LHC

(Actual) [2]

HL-LHC [2]

Norm. Emit. [um] 3.75 2 2.5

Energy TeV 7 6.5 7

Bunch length rms [cm] 7.55 9 9

Beta* [m] 0.55 0.3 to 0.25 0.64 to 0.15

Half Cros. angle [urad] 142.5 150 to 130 250

(0 with full CC)

S (crossing) 0.84 0.57 to 0.59 0.55 to 0.30

(1 with full CC)

H (hour glass) 0.99 0.95 to 0.95 0.99 to 0.88

[1] LHC Design Report – EDMS 445830

[2] Update of the HL-LHC op. scenarios for proton op. - CERN-ACC-NOTE-2018-0002

 Note: in HL-LHC with full crabbing it would be as head-on collision.

 In reality we will have 60 [urad] residual half crossing angle.

https://edms.cern.ch/ui/file/445830/5/Vol_1_Chapter_2.pdf
https://cds.cern.ch/record/2301292/files/CERN-ACC-NOTE-2018-0002.pdf


Luminosity reduction factors - imperfections

 Case of LHC (εN = 2 µm; 6.5 TeV;  β* = 30 cm)
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 Assuming similar impact on 
orbit and half cros. angle, i.e.:
~0.1 σx ≈ 1 μm ≈ 1 μrad

 Crossing plane dominated by 
angle variation

 can increase inst. luminosity

 on average, no luminosity 
loss in case of oscillation

 valid for small Δθ/2, 
otherwise the separation 
contribution becomes 
relevant…

 Separation plane dominated 
by orbit separation

 Basically unaffected by 
residual Δθ/2 



Luminosity reduction factors - imperfections

NOTE:

 The impact of each 1 

um displacement of 

each triplet element on 

total crossing angle 

variation is of the order 

of 4 urad in LHC and 8 

urad in HL-LHC

 The impact on total 

orbit separation is of 

the order of 2 um for 
both LHC and HL-LHC
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Luminosity with offset in crossing plane
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B2

B1

IP

LHC – no CC

HL-LHC – full CC

Offset @IP



Luminosity with offset in crossing plane
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B1

B2

IP

LHC – no CC

HL-LHC – full CC



Luminosity with offset in crossing plane
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B2

B1

IP

LHC – no CC

HL-LHC – full CC



Luminosity with offset in crossing plane
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B1

B2

IP

LHC – no CC

HL-LHC – full CC



Luminosity with offset in crossing plane
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B1

B2

IP

LHC – no CC

HL-LHC – full CC



Ground motion sensors
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Ground motion observations in LHC

 15 May 2018: Official start of HL-LHC excavation works.

 2018 run is the occasion to see perturbation on the beam due to ground motion

 It could allow us to see if our expectations for HL-LHC are correct.

54M. Guinchard, Oct. 2017 link

 Geophones are logging data since 2017

 Data logged into Timber in the form of PSD

https://indico.cern.ch/event/672364/contributions/2750548/
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Integrated PSD: 2017 vs 2018 (P5)

 PSDs integrated over range of frequencies

 Gives measured rms motion in that band

 Possible to see human activity in band 3-10Hz and above

 Some higher activity starting in Oct. 2017

 No obvious sign of civil engineering works started in May 2018

2017 2018



2018 Surface
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2018 P1
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2018 P5
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Triplet amplification
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Amplification of LHC Q1 assembly

 Only “valid” for f > 3 Hz

 Response below 3 Hz is unknown.

 Most likely flat close to 1
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 Measured on Q1 spare assembly in 

SM18 in preparation of civil 

engineering works

 See for example M. Guinchard, Oct 

2017, link

https://indico.cern.ch/event/672364/contributions/2750543/attachments/1541246/2417043/HL_LHC_CE_Overview.pdf


Amplification of HL-LHC triplet quadrupole
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 Simplified model by D. Ramos and M. Martos

 Strongly depends on dumping factor assumed in the model. Here a 

“pessimistic” 1% dumping.

 To be crosschecked with measurement on a LHC dipole (mechanically very 

similar to new triplets) and on first prototype.

17Hz

25Hz
7Hz

10Hz

22Hz 19Hz

29Hz



Assumed amplification functions
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 LHC: measured on Q1 spare assembly in SM18  (M. Guinchard, Oct 2017, link)

 HL-LHC: simulated by D. Ramos and M. Martos

 All computed as mean over different point measured/simulated.

https://indico.cern.ch/event/672364/contributions/2750543/attachments/1541246/2417043/HL_LHC_CE_Overview.pdf


Ground motion in 2018 – LHC vs HL-LHC
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2018 P1/P5 Amplified - LHC
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2018 P1/P5 Amplified – HL-LHC
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Fills analysis
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Fill 6308



Fill 6308 (t ≈ 8) impact on luminosity
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Fill 6308 (t ≈ 8) impact on orbit @BPMs
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Fill 6308 (t ≈ 8) impact on orbit @TCP
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Fill 6311
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Fill 6311 (t ≈ 6) impact on luminosity
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Fill 6311 (t ≈ 6) impact on orbit @BPMs
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Fill 6311 (t ≈ 6) impact on orbit @TCP
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Fill 6749
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Fill 6749 (P1) (t ≈ 13) impact on luminosity
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Fill 6749 (t ≈ 13) impact on orbit @BPMs
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Fill 6749 (t ≈ 10) impact on orbit @TCP
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Fill 6757 (1)



Fill 6757 P1/P5 Amplified – LHC
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Fill 6757 (t ≈ 10) impact on luminosity
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Fill 6757 (t ≈ 10) impact on orbit @BPMs
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Fill 6757 (t ≈ 10) impact on orbit @TCP
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Fill 6757 (2)
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Fill 6757 (t ≈ 13) impact on luminosity
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Fill 6757 (t ≈ 13) impact on orbit @BPMs
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Fill 6757 (t ≈ 10) impact on orbit @TCP
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88

Fill 6919



Fill 6919 (t ≈ 6) impact on luminosity
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Fill 6919 (t ≈ 6) impact on orbit @BPMs
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Fill 6919 (t ≈ 6) impact on orbit @TCP
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Fill 7122
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Fill 7122 (t ≈ 7) impact on luminosity
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Fill 7122 (t ≈ 7) impact on orbit @BPMs/ADT
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Fill 7122 (t ≈ 7) impact on orbit @TCP
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