

Status of the tungsten shielded BPM design for the inner triplets HL-LHC WP13

C. Boccard, M. Krupa, T. Lefevre,

G. Schneider, M. Wendt

8th HL-LHC Collaboration Meeting – CERN – 18/10/2018

BPMs per HL-LHC IP side

New BPMs per HL-LHC IP side

1x **BPMSQTA** cryogenic directional coupler,

aperture A (small)

5x BPMSQTB cryogenic tungsten-shielded

directional coupler, aperture B (large)

1x **BPMSWQ** warm directional coupler

2x **BPMWQ** warm or cold (non-directional) button

In total:

9 BPMs x 2 IPs x 2 sides = 36 new BPMs to be installed

Cryogenic directional coupler challenges

- Both beams in a single vacuum chamber
- Octagonal vacuum chamber
- Cryogenic BPMs installed in vacuum
- Heat load due to electron cloud
- Tungsten blocks at H and V planes to absorb collision debris
- Very complicated integration

Directional coupler – RF design

- RF design optimised with 3D EM simulations
 - Achieved very good directivity
- Electrode prototyping started with EN/MME
- Purchasing of 400 RF coaxial feedthroughs to be started soon
 - Technical specification ready
- Impedance being validated by WP2

Cryogenics - heat load and cooling

- Heat load contributions:
 - **2.5 W (45%)** collision debris
 - 2 W (35%) electron cloud
 - 1 W (20%) beam and cabling
- Amorphous carbon coating
 - Electron cloud effects lower by a factor of 40
- Active cooling with liquid helium required
 - Same technical solution as designed for the beam screen
 - Simulations performed by M. Pasquali (EN/MME)

Collision debris – tungsten absorbers

- Tungsten absorbers installed at H and V plane
 - 15% lower dose on the Q2B magnet
 - BPM electrodes installed at 45°
- Tungsten block alignment specification discussed with WP10
 - Manufacturing tolerances seem adequate
 - Simulations performed by F. Cerutti,
 M. Sabate Gilarte, A. Tsinganis (EN/STI)
- Procurement of 100 absorbers in collaboration with WP12
 - Same contract handled by TE/VSC

Integration in the interconnect

- Major collaboration of multiple WPs to advance integration of the IT interconnect regions
 - Work coordinated by D. Duarte Ramos (TE/MSC)
- Extremely busy region with multiple important stakeholders
 - Alignment
 - Welding and cutting machines
 - Cable routing
- Mock-ups planned
 - Details under discussion

String Test preparation

- IP5L configuration
- 2 BPMs needed by 2021 prototype manufacturing launched with EN/MME
- BPM test program presented at the HL-LHC Inner Triplet String Test Day (05/10/2018)

HL-LHC IT BPM conceptual design review

- Organised by WP13 and held on 17 May 2018
- With input from HL-PO, WP3, WP10, WP12, WP16, EN/MME
- Identified 4 recommendations and 20 actions
 - 4 recommendations followed
 - 13 actions completed
 - 3 actions being addressed
 - 4 actions to be addressed
- Summary to be presented at the TCC

D2 BPM – from warm to cold

- Recent request to study moving the D2 BPM into the cryostat
 - Motivated by full remote alignment
- Preliminary design done
 - No showstoppers identified
 - Huge thanks to N. Chritin and A. Demougeot (EN/MME)
- Detailed design and integration study to follow

Conclusions and outlook

- Development of new HL-LHC BPMs on track
 - Collaboration and common designs with other WPs
- Project priorities driven by the String Test
 - Prototype manufacturing started by EN/MME
 - Tests on mock-ups planned before the String Test
- Purchasing planned and on schedule
 - Tungsten absorbers with TE/VSC
 - RF coaxial feedthroughs ready to start
- Conceptual design review held in May
 - All recommendations followed
 - Most actions already completed or being addressed
 - Remaining actions to be addressed soon

Thank you for your attention!

Acknowledgements: F. Cerutti, N. Chritin, A. Demougeot, D. Duarte Ramos, G. Iadarola, R. Jones, M. Pasquali, A. Tsinganis

Back up: design priorities

- Main focus on the cryogenic directional couplers BPMSQTA and BPMSQTB which are required for string test in 2020
- Minimising differences between the two designs
- Studying possibilities of reusing parts of the design for the non-cryogenic BPMSWQ

Back up: electrode design

3D printing of the 2016 electrode very challenging Major effort made to simplify the electrode's shape in 2017 Additional performance improvements achieved

Back up: TDR simulations

Goal: electrode impedance stable at $50 \pm 0.5 \Omega$

Back up: directivity

Back up: directivity

Dream: **30+ dB** directivity → 0.0316 downstream ratio

Back up: temporal separation

Optimisation: temporal bunch separation at **BPM locations**

Back up: passive cooling

BPM 220 K above beam screen's temperature

Temperature 2 Type: Temperature

Type: Temperatur Unit: K Time: 1

10/11/2017 14:08

79.962 Min

Back up: active cooling

Cooling inspired by the beam screen solution Electrodes **5** K above beam screen's temperature

Back up: Tungsten shielding

Courtesy:

F. Cerutti

A. Tsinganis

Back up: Heat load

Back up: Locations

Number	1	2	3	4	5	6	7
Туре	BPMSTQA	BPMSTQB	BPMSTQB	BPMSTQB	BPMSTQB	BPMSTQB	BPMSQW
Distance from IP [mm]	21853	33073	43858	54643	65743	73697	86846
Location comments	Between TAXS and Q1A	Between Q1B and Q2A	Between Q2A and Q2B	Between Q2B and Q3A	Between Q3B and CP	Between CP and D1	After D1, WARM
N	5.34	8.34	11.23	14.11	17.08	19.21	22.72
Periodicity number							
Preceding ideal position [mm]	20,570	31,790	43,010	54,230	65,450	72,930	84,150
N = floor(N)							
Succeeding ideal position [mm]	24,310	35,530	46,750	57,970	69,190	76,670	87,890
N = ceil(N)							
Distance from ideal position [mm]	-1,283	-1,283	-848	-413	-293	-767	1,044
Towards the IP. Negative number means it's too far from the IP							
TOF from ideal position [ns]	-4.28	-4.28	-2.83	-1.38	-0.98	-2.56	3.48
Towards the IP. Negative number means it's too far from the IP							
Bunch arrival time difference [ns]	3.92	3.92	6.82	9.72	10.52	7.36	-5.51
Negative numbers mean the bunch going towards the IP arrives first							

Back up: LHC electrodes

Courtesy: C. Boccard, P. Clergue

