

IP displacement and IC misalignment effects on the triplet radiation load

Marta Sabaté-Gilarte, Francesco Cerutti, Andrea Tsinganis

WP10

Energy deposition & R2E

OUTLINE

Effects on the triplet radiation load derived from:

- Displacement of the Interaction Point (IP) for horizontal crossing:
 - Horizontal: in the crossing plane
 - Vertical: in the perpendicular plane
- Misalignment of the interconnect (IC) between Q2A and Q2B for horizontal crossing:
 - Transverse shift of the IC with respect to the quadrupole and displacement of the BPM tungsten shielding

Effect of the orbit correctors orientation on their exposure

THE MODEL

- Point 5
- Triplet D1
- Horizontal crossing of 250 μrad
- Optics: HL-LHC v1.3

Effects of the IP displacement for horizontal crossing

essential input from R. De Maria BE-ABP

BACKGROUND

IP displacement at IR5

- Crossing angle: 250 μrad on the horizontal plane
- Three cases:
 - Reference position (noOff)

M. Sabaté-Gilarte

- Displacement of 2 mm on the horizontal plane (+2mmH)
- Displacement of 2 mm on the vertical plane (+2mmV)

Power by region (W)

With the last interconnect configuration

CM: cold mass BS: beam screen

	Region	No Offset	+2mmH	+2mmV	
CM	Q1A+Q1B	111	114	112	
BS		165	170	167	
CM	Q2A+Corr	95	101	98	
BS		62	66	64	
CM	Q2B+Corr	133	146	134	
BS	~ 10% increa	ise 96	110	97	
CM	Q3A+Q3B	118	118	118	
BS		69	69	67	
CM	СР	42	37	44	
BS	10-20% decrea	ase 49	38	47	
CM	D1	66	64	66	
BS		46	44	46	
CM	Pipe	18	19	19	
BS	extension	59	57	59	
CM	total	583	599	>2% increa	ase
BS		546	554	>1% increa	ase

Effects of the InterConnect misalignment for horizontal crossing

essential input from C. Garion TE-VSC

BACKGROUND

IC misalignment for horizontal crossing

- Interconnect between Q2A and Q2B
- Crossing angle: 250 μrad on the horizontal plane
- Two contributions:
 - BPM misalignment: -250 μm
 - IC misalignment: -250 μm
- Mechanical displacement towards the ring centre to let the hot spot more exposed

-250μm

Peak dose profile in the inner coils (L_{int} = 3000 fb⁻¹) HL-LHCV1.3 Round 250urad

Effect of the orbit correctors orientation on their exposure

essential input from G. de Rijk TE-MSC

Orbit corrector model

Orbit corrector model

At the magnet ends, first and last 10 cm of the mechanical length, the return coils lay in the opposite plane: in the vertical plane for horizontal alignment and the other way around.

vertical alignment

Orbit corrector model

Dose distribution transverse section at the Q2A orbit corrector:

Peak Power density in the triplet for vertical crossing

Peak Power density in the triplet for horizontal crossing

Vertical crossing orbit corrector in the CP

vertical alignment

Peak dose profile in the inner coils for CP-OC $(L_{int} = 3000 \text{ fb}^{-1})$

return coils

Vertical crossing Q2B orbit corrector

ent vertical alignment

Vertical crossing Q2A orbit corrector

vertical alignment

Horizontal crossing orbit corrector in the CP

gnment vertical alignment

Horizontal crossing Q2B orbit corrector

vertical alignment

Horizontal crossing Q2A orbit corrector

horizontal alignment vertical alignment

Peak dose profile in the inner coils for QAB-OC ($L_{int} = 3000 \text{ fb}^{-1}$)

Summary and Conclusions

Summary and Conclusions (I)

IP displacement:

- Results for horizontal crossing with a displacement on the IP of 2mm.
- In the crossing plane:
 - The total dose increases by 35% (assuming constant displacement) when the
 displacement is in the same plane and has the same sign as the crossing angle.
 - The **power density arises** by **40%** but the values are much below the design limit (12 mW/cm³ which is supposed to be three times lower than the quenching limit).
 - Even if locally the total power increases by 10%, in the Q2B, the global effect is around 1%.
 - Based on precious studies, a bump on the opposite side of the crossing angle could be beneficial.
- In the orthogonal plane:
 - The effect can be neglected.

Summary and Conclusions (II)

IC misalignment:

- The displacement was modeled assuming two contributions:
 - Displacement of the tungsten shielding in the BPM by -250 μ m.
 - Shift of the IC by -250 μm.
- Mechanical displacement towards the ring centre to let the hot spot more exposed.
- The effect is still negligible.

Summary and Conclusions (III)

Effect of the orbit correctors orientation on their exposure:

- The orientation of the nested orbit correctors affects the maximum dose their coils are exposed to.
- The recommended configuration is with the **inner layer giving a vertical field**, i.e. horizontal correction.

Thank you for your attention

