

Thermal Qualification of the HL-LHC Beam Screens for the Inner Triplets

P. Borges de Sousa, T. Koettig, R. van Weelderen, J. Bremer, M. Morrone, C. Garion, V. Baglin, S. Claudet

Outline

- Introduction to the HL-LHC beam screen
- Overview of requirements
- Thermal validation test stand: emulating HL-LHC thermodynamic conditions
- Summary of measurement runs
- Results & discussion
 - Run #1
 - Run #2
- Conclusions and outlook

HL-LHC beam screens: overview (D1-type)

HL-LHC beam screen mock-up (D1-type)

0.8 m full-scale prototype

(cooling tubes connected in series for initial pressure tests)

Piping & Instrumentation Diagram

HL-LHC beam screen test stand at the Cryolab

Requirements and first measurement run

- Operating T of beam screen (inner surface): 60 K to 80 K
- Maximum allowed ΔT over 60 m: 15 K (5 K in radial direction)
- Operating *T* of the helium flow: **55 K to 75 K**
- Nominal heat load on the tungsten blocks: 15 W/m
- Working fluid: supercritical helium, **17 bar 23 bar**
- Mass flow rate of helium circuit: ≈ 11 g/s T drives heat load to 1.9 K

Maximum heat load to 1.9 K bath: 0.5 W/m

Baseline: 32 springs

Inermet blocks

Results: beam screen temperature profile

- Steady-state measurements
- Homogeneously distributed heat load on all 4 quadrants (0 to 20 W/m)
- Varied base (helium) temp. between 40 K and 80 K
- Pressurised He II bath (cold bore) actively controlled at 1.9 K ± 1 mK

Measuring the heat load to the 1.9 K cold bore

- Heat load transmitted to the 1.9 K bath (cold bore) by radiation and conduction
- Requirement < 0.5 W/m
- Conduction through each of the 32 spring + sphere sets
- Radiation from the tungsten and beam screen surfaces

Results: heat load to the 1.9 K cold bore

200 mW/m if beam screen is at 60 K, **375 mW/m** if beam screen is at 80 K \rightarrow **17 W** over the 60 m

Results: heat load to the 1.9 K cold bore

200 mW/m if beam screen is at 60 K, **375 mW/m** if beam screen is at 80 K \rightarrow **17 W** tover the 60 m For operational beam screen (and Inermet block) temperatures, **most of the heat load to the 1.9 K cold bore is transferred via conduction** through the springs (90% at 60 K and 70% at 80 K)

Results: thermal time constants "beam ON → beam OFF"

- Time constants of the tungsten blocks rise with rising base temperature
- Steady state in ≈ 5τ:
 - ≈ 43 min at 60 K
 - ≈ 75 min at 80 K (tungsten at 90 K)

Results: thermal time constants "beam ON → beam OFF"

- Time constants of the tungsten blocks rise with rising base temperature
- Steady state in ≈ 5τ:
 - ≈ 43 min at 60 K
 - ≈ 75 min at 80 K (tungsten at 90 K)

Results: uneven heating on beam screen quadrants

- Nominal overall heat load on beam screen (15 W/m)
- Unevenly distributed heat load
- Base temperature kept constant
- Influence of heat load distribution on tungsten and beam screen temperatures
- Influence of heat load distribution on 1.9 K bath

Results: uneven heating on beam screen quadrants

	Nominal heating			Uneven "South"			Uneven "Northeast"		
	60 K	70 K	80 K	60 K	70 K	80 K	60 K	70 K	80 K
Min. ΔT to base T	7.8 K (S)	7.8 K (S)	7.7 K (S)	5.7 K (W)	5.7 K (N)	5.8 K (N)	0	0	0
Max. ΔT to base T	9.0 K (E)	8.9 K (E)	8.9 K (E)	15.9 K (S)	15.8 K (S)	15.5 K (S)	18.2 K (E)	18.0 K (E)	18.0 K (E)
Heat load to 1.9 K	189 mW	243 mW	282 mW	198 mW	261 mW	289 mW	180 mW	242 mW	280 mW

2) Even though heat load on BS is the same, heat load transferred to 1.9 K bath changes → south quadrant dominates heat transfer (2 rows of springs)

Conclusions for the first run

- Maximum temperature rise on inner BS: 0.5 K
 - Factor 10 lower than max. allowed (nominal conditions)
- Maximum temperature rise on tungsten blocks: 9 K (nominal conditions)
 - Independent of base temperature
 - Highly linear with increasing heat loads
- Heat load to 1.9 K cold bore: 200 mW to 375 mW per meter (nominal conditions, 60 K to 90 K tungsten blocks temp.)
- Thermal time constants tungsten blocks 0-15 W/m: 9 min to 15 min, temp.-dependent
- Uneven heat loads show no instabilities in the flow

Parameters for the second measurement run

- Identical run to assess reproducibility of results
- Base temperature varied from 40 K to 90 K
- Heat load on beam screen varied from 0 to 20 W/m (fewer steps)
- Beam screen circuit pressure varied from 17 bar to 23 bar

Results: beam screen temperature profile (both runs)

Mean ΔT between tungsten blocks and base temperature

Max ΔT between inner surface of BS and base temperature

Results: heat load to the 1.9 K cold bore (both runs)

Temperature (K)

Conclusions & Outlook

New measurement run will focus on analysing what happens to the overall 1.9 K heat load **if the beam screen touches the cold bore** (motivated by the tolerances between beam screen and cold bore)

Experimental results validate the thermal design of the HL-LHC beam screens

Thank you for your attention!

