US HL-LHC AUP: Ready for Production

Giorgio Apollinari – FNAL

8th HiLumi Collaboration Meeting – CERN, Oct 2018
Outline

- Introduction
- Deliverables
- Schedule (and Cost)
- AUP Needs to “Really” Start
- Conclusions
Introduction

- US HL-LHC AUP has been properly introduced by Simona yesterday
- HL-LHC AUP is a 413.3b Project established to fulfill a US contribution to HL-LHC
 - CD-0 (Mission Need) approved in 2016
 - CD-1 (Cost Range) approved 2017
 - Also obtained CD-3a (Long Lead Procurement) for Nb3Sn
 - CD-2 (Project Baseline) in progress
 "Plan the Work, Work the Plan"
 - CD-3 (Start of Construction)
 - CD-4 (Project Completion)
HL-LHC AUP Scope – Technical Details

- 10 Q1/Q3 Cryoassembly
- 10 Dressed RFD Cavity
Performance Requirements

- Performance Requirements are documented in “Functional Requirements Specifications” documents
 - Approved by CERN
 - Accepted by HL-LHC AUP
- Under Document Control at CERN and US

Us-HiLumi-doc-36
Us-HiLumi-doc-64
Under Convergence
Us-HiLumi-doc-294
HL-LHC AUP Project Completion

- AUP is complete when 10 Q1/Q3 Cryoassemblies and 10 RFD Dressed Cavities are delivered to CERN and have undergone inspection to exclude shipment damage.
 - Performance Requirements Acceptance of US deliverables is agreed upon before shipment from the US to CERN (see, for example, US-HiLumi-doc-1148: “Q1/Q3 Cryoassembly Acceptance Plan”)

- It is in the common interest of US-AUP and CERN to find “good use” for Prototype elements
 - Prototype Cryo-Assembly usage in String Test @ CERN
 - RFD Prototype Cavities @ CERN for Integration Develop.

- **AUP does not contain any activity of Installation or Commissioning at the HL-LHC.**
Compliance & Integration with CERN Requirements

- CERN is final user of HL-LHC AUP deliverables
- First and foremost: magnet cryo-assemblies and RFD crab cavities must meet the CERN requirement of being compliant to the Essential Safety Requirements of the European Pressure Equipment Directive (PED).
 - In addition, both assemblies must be compliant with the FNAL ES&H Manual in order to be tested at FNAL.
- Compliance on several other aspects are documented and in various stages of approval between HL-LHC AUP and CERN:
 - Usage & Approval of materials
 - Performance: FRS and Acceptance Criteria
 - Quality of Manufacturing & Documentation:
 - Manufacturing and Inspection Plans (including holding points), Manufacturing and Test Folders and Deliverables Drawings
 - Definition and Signoff of Interfaces

More on this later
Agreement with CERN on Delivery Dates

- The AUP deliverables need to be at CERN well in advance of the HL-LHC operations to allow for installations and commissioning of the equipment.
- AUP-CERN have negotiated and agreed upon on “Early Delivery” and “Late Delivery” dates.
 - Difference between Early and Late Delivery can also be represented as “Schedule Float”
- During the latest DOE gate review (CD-1) in US, AUP was requested to increase the “Schedule Float”.
 - AUP plans toward a minimum of 11 months of float on CryoAssemblies and RFD Cavities delivery dates.
 - Dates agreed upon in Feb ‘18.
Agreement with CERN on Delivery Dates (cont.)

<table>
<thead>
<tr>
<th>Q1/Q3</th>
<th>Early Delivery Date</th>
<th>Late Delivery Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL project schedule</td>
<td>US project schedule</td>
<td></td>
</tr>
<tr>
<td>LQXFA/B01</td>
<td>April 2021</td>
<td>March 2022</td>
</tr>
<tr>
<td>LQXFA/B02</td>
<td>August 2021</td>
<td>July 2022</td>
</tr>
<tr>
<td>LQXFA/B03</td>
<td>April 2022</td>
<td>March 2023</td>
</tr>
<tr>
<td>LQXFA/B04</td>
<td>August 2022</td>
<td>July 2023</td>
</tr>
<tr>
<td>LQXFA/B05</td>
<td>February 2023</td>
<td>January 2024</td>
</tr>
<tr>
<td>LQXFA/B06</td>
<td>June 2023</td>
<td>May 2024</td>
</tr>
<tr>
<td>LQXFA/B07</td>
<td>October 2023</td>
<td>September 2024</td>
</tr>
<tr>
<td>LQXFA/B08</td>
<td>December 2023</td>
<td>November 2024</td>
</tr>
<tr>
<td>LQXFA/B09</td>
<td>May 2024</td>
<td>April 2025</td>
</tr>
<tr>
<td>LQXFA/B10</td>
<td>October 2024</td>
<td>September 2025</td>
</tr>
</tbody>
</table>

Points:
- The AUP baseline (to be approved in Dec ‘18) aims at delivering items to CERN by the “Early Delivery Date”.
- CERN selected to use the “Early Delivery Date” to build the HL overall Project schedule.
AUP Funding and Funding Profile

- **CD-2/3b DOE IPR Review:**
 - **TPC:** ~240 M$
 - BAC of ~178-180 M$ and ~36% Cont. on work-to-go
 - **Schedule Float:**
 - Minimum 11 Months to CERN “Drop-Dead Need-by” date
 - 36 Months to DOE CD-4

- Funding Profile requested to DOE-HEP

<table>
<thead>
<tr>
<th>FY16+17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 M$</td>
<td>27 M$</td>
<td>50 M$</td>
<td>50 M$</td>
<td>~43 M$</td>
<td>~40 M$</td>
<td>~20 M$</td>
<td>~10 M$</td>
<td>~240 M$</td>
</tr>
</tbody>
</table>

- **TPC and Funding Profile would support:**
 - Planned Scope and CryoAssemblies/RFD cavities delivered to CERN by “Early Delivery” date.
Tailoring Strategy

- Approvals phases for Procurement/Construction
 - Approval of Long-lead Procurements (July ’17)
 - Requested and obtained at CD-1 to advance the Nb₃Sn superconductor strand procurement due to schedule need
 - Obtained budget authority for 17.7 M$
 - Approval for Fabrication Start of coils and magnets.
 - Requested at CD-2 time to advance the critical path activities of magnets assembly.
 - CD-3b will also support the procurement of low-risk Crab Cavities raw materials.
 - Request budget authority for ~130 M$
 - Approve Full Construction on balance of Project (CryoAssemblies and Crab Cavities Fabrication)
 - No other subsystem is expected to have remaining final design activities at time of CD-3

Dec ’18
Design Reviews

- Preliminary and Final Design Reviews executed by independent external teams:
 - **MQXFA Design Criteria Review**
 - **MQXFA Final Design Review and Q1/Q3 Cold Mass and CryoAssembly Preliminary Design review**
 - **RFD Dressed Cavities Preliminary Design review and Nb Raw Material Final Design review**
 - **Mini-Review of MQXFAP2 Results**
 - Requested to show performance to MQXFA FRS for DOE to approve Magnet Construction (CD-3b)
“Optimizations”

- Opportunities for “Optimization” (or Changes) will inevitably present themselves during execution of the Project.
- The essence of changes in a DOE 413.3b Project like AUP is that they must be “controlled”. In AUP, changes proposals go through a process called Baseline Change Request (BCR). BCRs are:
 1. Proposed
 2. Examined for effects on
 - Cost
 - Schedule
 - Technical Performance & Interfaces
 - Resources
 3. Approved or Rejected
 4. Implemented in Project Baseline
- The AUP Change Control Board looks at 1) and 2) above.
- Approvals above 1M$ (Cost) or 6 months (Schedule) are beyond AUP Project Management/Laboratory authority

Optimizations/Changes need to be controlled (and minimized). “Forward Looking” Optimizations are slightly easier to implement. “Retroactive” Optimizations can quickly become the kiss-of-death for AUP scope
Contingency Discussion

- Setbacks during FY18 (both within and outside AUP) are indicating that at this stage of the Project the low contingency (~32%) presented earlier to the funding agency might be overly optimistic.
 - Initial shaky EVMS Performance of some Control Accounts during “test period” before Baseline (Cold Mass and CryoAssembly efforts)
 - Large number of substantial changes with a risk of a rapidly escalating budget
 - Feb. ‘18 failure of MQXFAP1 for insufficient impregnation/erroneous operational procedure and failures and subsequent refurbishment of BNL Magnet Vertical Test facility (with addition of 3rd Cryo operator)
 - Failure of LCLS-II Cryomodule Shipment
 - AUP FY18 Funding level decrease by 2.5M$ in June ’18.
 - Risk of CERN “optimizations” after AUP Baseline and/or external dependencies on CERN provided components

- Event with important repercussion on the Total Cost require a course correction at this stage. A ~35-40% Contingency is more in line with Projects with CERN (CMS, ATLAS in early 2000) at this stage of execution.
Emojical Snapshot of (pre)Production Performance - MQXFA Magnets

- **Cables:**
 - Fabricated: 26 (12 by LARP, 14 by AUP)
 - Accepted: 25
 - Quarantined: 1 (cross-over close to minimum length)

- **Coils at FNAL:**
 - Fabricated: 10 (completed) + 3 (under fabrication)
 - Accepted: 6
 - Rejected: 1 (damage during curing)
 - Quarantined: 3 (electrical weakness to coil parts)

- **Coils at BNL:**
 - Completed commissioning of new winding & curing equipment for MQXFA coils
 - Completed winding and curing of 1st production coil

- **Structures:**
 - Assembled MQXFAP2
 - Procurement of MQXFAP3 parts in progress.
 - Issues with procurement of Magnets #4 to #7 ARMCO iron

- **Vertical Test**
 - MQXFAP2 under test at BNL
Technical Progress - Magnets

- All eyes on MQXFAP2 Vertical Test at BNL
 - Visit from FNAL team during setup and QP Tests
 - Magnet cooled-down to 4K by mid-September.
 - HiPot: 1.15 kV Coils to Gnd.
 - 7 quenches performed:
 - 13.27 kA(#1) to 14.97 kA(#9), Δ~200 A
 - Goals: 16.5 kA (Objective) and 17.9 kA (Ultimate)
- Early Finish Date (30 training quenches): 11/1
- Late Finish Date: (50 training quenches): 11/14
- MQXFAP1 stopped ~400A from Ultimate and saw Δ~120 A
Technical Status - RFD Cavities

- Validated new rotational-BCP tool at ANL
- Newly fabricated HOM dampers by JLab
 - Warm and cold tests performed at Jlab/ODU
- Continued cold-tests on LARP prototypes
 - Exceeded requirements of field and quality factor (FNAL)
 - Still troubleshooting damper losses (ODU/Jlab/FNAL)
- Placed contract for bare cavity fabrication
 - Prototype + Option for full Production

Successful test of bare cavity at 2K (Fermilab).
Exceeded field and quality factor requirements.

2K Test of cavity with HOM dampers showing successful field (~5MV) and low Quality Factor (ODU/Jlab).
Compliance & Integration with CERN: Requirements to Satisfy US Funding Agency

- HL-LHC AUP approach to approval status:
 - **Baseline for Cavities, CM & CA (CD-2 Scope):**
 - FRS approved by CERN and accepted by AUP
 - Materials List in draft form within AUP
 - Acceptance Criteria in draft form within AUP
 - Interfaces Identification completed within AUP
 - **Magnets Construction (CD-3b Scope):**
 - Materials List approved by CERN and accepted by AUP
 - MIPs approved by CERN and accepted by AUP
 - Acceptance Criteria approved by CERN and accepted by AUP
 - Interfaces fully documented and approved, including CERN approval of AUP-CERN external interfaces
What we really need to obtain DOE Approval (i.e. “start AUP”)

- Magnet Construction (CD-3b)
 - CERN Approval of Magnet Acceptance Criteria. *Good Progress*
 - EDMS 2031083 – US HiLumi Docdb 1103
 - Interface Documents from CERN
 - Q1/Q3 Electrical Schematic & Quench Protection Specification
 - MQXFA Interface Specification:
 - EDMS xxx – US HiLumi Docdb 1674
 - Definition of all MQXFA Materials – EDMS 1786261 & 1786913
 - Approval on CLIQ Leads and of MQXFA Material list with G11 (vs. G11-CR)
 - Approval of MIPs. *Good Progress*
 - LBNL Cable MIPs – EDMS 1866230
 - FNAL Coils MIPs – EDMS 1866237
 - BNL Coil MIPs – Last touches from AUP, EDMS 1995810
 - LBNL Magnet MIPs – Last touches from AUP, EDMS 1866238
 - Approval of AUP Conductor QA Plan – EDMS 2004979 and Parts/Cost Exchange – EDMS 1825173. *Good Progress*

- Interactions with WP3 in full swing for the last few months
 - Friday satellite Meeting

- *After DOE Approval, will call PRR (and MRR) with CERN representatives*
“AUP start” (cont.)

- **Baseline for Cavities, Cold Mass & CryoAssembly (CD-2 Scope):**
 - CERN Approval for Cryo-Assembly FRS. **Good Progress**
 - EDMS 1828585 - US HiLumi Docdb 246
 - Other documents (Acceptance Criteria, Interfaces identification and Material List) needed in draft form, and are being developed by AUP in Collaboration with the appropriate WP.
Summary

- AUP continued with steady progress in 2018
- Experience from (pre)Production in line with expectations
- HL-LHC AUP is ready for Baseline
- MQXFA Magnet Fabrication is ready to Start
 …with help from CERN on documents approval…