

Electrical Quality Control (QC): coil to coil parts

Vittorio Marinozzi - Fermilab

Main electrical issues with coil parts

- Before coil impregnation, resistance between coil and coil parts (pole, end-shoe) is measured
 - Sometimes resistance < 1 G Ω can be observed
- Different causes/mechanisms have been identified
- Really difficult to determine if contact points are more than one
- Sometimes not possible to repair
- Question: which resistance can we consider the safe limit?
 - We want to discuss and re-define our electrical QC criteria for coil parts based on the analysis we are going to present (not available before now)

Example: coil QXFA108

- Showed 170 kΩ resistance to pole before epoxy impregnation
 - Short location identified
 - Tried to repair, with no good results
 - Large contact area → binder issue

Present QC tests

- HiPot Coil pole : 500 V
- HiPot Coil end-shoe: 1000 V
- QXFA Coil Fabrication Electrical QA HiLumi doc 521
- HiPot end-shoe end-shoe: 1000 V
- Peak voltages:
 - Pole turn pole turn: ~ 50 V for MQXFA and MQXFB
 - Midplane turn midplane turn: ~ 300 V for MQXFA, ~ 500 V for MQXFB
- Options for updated QC criteria:
 - Criterion 1: HiPot at V_max * f + c
 - V_max = maximum voltage during a quench
 - f,c = ? typical values are f = 2 and c = 500 V
 - Note: c = 500 V looks excessive if V_max = 50
 - Criterion 2: Resistance measurement, after defining minimum acceptable resistance based on power dissipation

Target for criterion 2

- Identify risks due to short between coils and parts. Evaluate minimum acceptable short resistance
 - Goal: try to avoid high-voltage hipots with coil parts
 - Needed: simulations of coil-parts shorts
- Cases considered:
 - Short from IL pole-turn to OL pole-turn through the pole
 - Short from IL midplane-turn to OL midplane-turn through the end-shoe
 - Simulations done for MQXFA and MQXFB in nominal protection system (with CLIQ and OL heaters, and no dump)
 - Single shorts could be considered not worrying
 - But, it is difficult to identify them

Assumptions for simulations

Simulations performed with

- Current: 17980 A (ultimate)
- No dump resistor
- Quench heaters: Outer Layer (600 V MQXFA, 900 V MQXFB)
- CLIQ:
 - 600 V, 40 mF for MQXFA
 - 1000 V, 40 mF for MQXFB
- Nominal conductor parameters
- Constant short resistance
 - Measured at warm

Short from IL pole-turn to OL pole-turn through the pole

Short from IL midplane-turn to OL midplane-turn through the end-shoe

Example of Current Discharge

Possible criteria: peak power dissipation

 Define a maximum acceptable peak power dissipation, in order to define minimum acceptable resistance between coil and parts

Examples of power criterion

- Maximum peak power dissipation is set to 10 mW. Coils are accepted if:
 - Resistance to pole is greater than 1 $M\Omega$ for MQXFA, 2 $M\Omega$ for MQXFB
 - Resistance to end-shoe is greater than **7 M\Omega** for MQXFA, **30 M\Omega** for MQXFB
- Maximum peak power dissipation is set to 1 mW. Coils are accepted if:
 - Resistance to pole is greater than 10 $M\Omega$ for MQXFA, 20 $M\Omega$ for MQXFB
 - Resistance to end-shoe is greater than **70 M\Omega** for MQXFA, **300 M\Omega** for MQXFB
- Possible criterion to choose maximum power:
 - Typical hipot voltage x typical leakage current: 1000 V x 10 μA = 10 mW

Some discussion

- Criterion based on power dissipation through a short can be suitable for coil to pole
 - Likely, contact resistance due to binder, with "large" contact area
 - We had coil-pole shorts in the past magnet tests, with no issues during powering tests
- Criterion based on power dissipation may be unsuitable for coil to end-shoe
 - Possibly, short due to damage of the insulation due to sharpness of endshoe, with small contact area and difficulty of evaluation of power density and temperature increase
 - Hi-pot may be best solution, even though the present 1 kV level could be revised, considering also that there are three layers of insulation from IL to OL midplane turns through end-shoes, and that each coil shall pass Impulse test at 2.5 kV.

Peak voltage: 300 – 500 V

Proposed QC tests and criteria (to be discussed):

- Coil to pole resistance
 - > 1 M Ω for MQXFA
 - \sim > 2 M Ω for MQXFB
 - Power dissipation < 10 mW in case of double short</p>
- Coil to End-Shoe HiPot, and
- IL End-Shoe to OL End-Shoe HiPot at
 - 300 V for MQXFA
 - 500 V for MQXFB
 - Redundancy provided by having three layers of insulation between midplane turns through end-shoes; direct path tested during impulse test at 2.5 kV
- More ideas?

Thank you