Overview of HL-LHC-UK, and the collimation activities

Rob Appleby, Sam Tygier, Haroon Rafique, Scott Rowan, Roger Barlow, Tom Furness, Simon Fletcher, Stephen Gibson, Andrey Abramov, Stewart Boogert, Hector Garcia-Morales, Laurie Nevay, Stuart Walker, Luke Dyks, Maxime Rey, Daniele Mirarchi

HL-LHC collaboration meeting
CERN, 16th October 2018

robert.appleby@manchester.ac.uk
HiLumi-LHC design study FP7 2011-2015
The UK hosted the HL-LHC kick-off meeting at Cockcroft Institute in November 2013.
Discussions with STFC for UK project followed, with early Sol for LHC-UK
Sol (final one) submitted early 2015
Proposal submitted in March 2016
CERN finance approved October 2015
STFC finance approved March 2016
CERN-UK contract signed April 2017
7 UK institutes as members
£8M of UK and CERN funding over 4 years, with institute and university money combining with STFC
Main UK activities:
- WP1: Collimation
- WP2: Crab cavities
- WP3: Diagnostics
- WP4: Cold powering
Note that some sub-tasks led by an academic may change to a PDRA once recruited
Overall UK goals

HL-LHC-UK collimation tasks

• Task 1: Collimation and beam dynamics simulation [14 PDRA years - Man, RHUL, Hud].
 1. Study of LHC loss maps in simulation and comparison with run II measurements, including participation in collimator data-taking.
 2. Investigation of novel collimation concepts, e.g. hollow electron lens and crystal collimation. Use of BDSIM developments (outside of HL-LHC-UK) to simulate novel collimation techniques.
 3. Further development of MERLIN at Manchester and Huddersfield, to provide 6D tracking and novel collimator materials. Revision and impact of scattering physics models.
 4. Continued use and development of SixTrack by RHUL to study new focusing scheme via aperture scans of the IR triplets. Investigate the effects on collimation settings from non-linear optics, including studies of off-momentum particles and the impact of chromaticity.

• Task 2: Collimator prototyping [4 PDRA years - Man, Hud]
 1. Investigate the possibility of Graphene monolayer coatings for ultra-low impedance collimators with a bench test in Manchester.
 2. Development of a collimator prototype with integrated diagnostics, which can actively compensate for the effects of adverse heating on jaw geometry.
Significant Usability/Maintainability Improvements

- **Usability**
 - New website
 - Public Github repository
 - Build/Install/IDE use guide
 - Quick Start Guide
 - Examples and Tutorials

- **Maintainability**
 - Developer/Coding style guide
 - API/Class library
 - Growing Test suite
 - Copyright revision to GPL2+
 - Standardized code style
 - Update of legacy code to C++11/14

S.Rowan@hud.ac.uk
Current Investigations/Roadmap

- Merlin++ 5.02 Released!
 → If anyone is interested we are happy to provide support
- Future Optimization/Scalability
 → Hybrid parallelism, i.e. MPI + threading (C++17?)
 → Explicit vectorization, guided by Intel® Advisor (make use of modern cores)
 → Make use of modern highly-optimized numerical libraries (LAPACK etc)
- Future Functionality/Simulations
 → Development/implementation of composite materials code
 → Validation/benching of composite materials code against SixTrack etc
 → Active halo control with transverse damper
 Potential for…
 → Crystal collimation studies
 → Halo control through Integrable optics : IOTA at Fermilab
Analysis of run 2 data

- Studied proton losses in Merlin with radiation showers recorded by BLMs
- Use squeeze during 2012 and 2016
- Combined ramp and squeeze 2018
- Range of energies and optics
- Used for HL-LHC validation

Collimator gap changes (2016)

Region Type Gap (mm)
IR7 TCP 5.5
IR7 TCS 7.5
IR7 TCLA 11.0
IR3 TCP 15.0
IR3 TCS 18.0
IR3 TCLA 20.0
IR1 TCT 23.0 → 9.0
IR5 TCT 23.0 → 9.0
IR2 TCT 37.0
IR8 TCT 23.0 → 15.0
A new collimation system has been introduced for the high-beta run at injection.

The idea is to reduce the background deposition in the forward detectors (ALFA/TOTEM roman pots) which have half-gaps of 3 sigmas.

It is based on a two stage collimation using tungsten collimators (single previously)

Primary collimator is at 2.5 sigma.

Secondary collimators at 2.7 sigma.

Collimation system for Special Physics run

<table>
<thead>
<tr>
<th>Collimator</th>
<th>Plane</th>
<th>IR</th>
<th>Half gap [σ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLA.A6[R,L][7,8][1/2]</td>
<td>V</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>TCLA.A5[R,L][3,4][1/2]</td>
<td>V</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L2.B1</td>
<td>V</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4R8.B2</td>
<td>V</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L[R,5][1,2]</td>
<td>V</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L[R,5][1,2]</td>
<td>V</td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>TCLA.C6L[R,L][7,8][1/2]</td>
<td>V</td>
<td>7</td>
<td>2.7</td>
</tr>
<tr>
<td>TCP.D[L,R][1,2]</td>
<td>V</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td>TCP.D[L,R][5,6][1/2]</td>
<td>V</td>
<td>3</td>
<td>3.0</td>
</tr>
<tr>
<td>All TCSGs</td>
<td>H</td>
<td>3</td>
<td>6.3</td>
</tr>
<tr>
<td>All TCSGs</td>
<td>H</td>
<td>3</td>
<td>6.3</td>
</tr>
<tr>
<td>TCP.C6[L,R][7,8][1/2]</td>
<td>H</td>
<td>7</td>
<td>4.0</td>
</tr>
<tr>
<td>TCSG.B4[L,R][7,8][1/2]</td>
<td>H</td>
<td>7</td>
<td>5.0</td>
</tr>
<tr>
<td>TCSG.B4[L,R][7,8][1/2]</td>
<td>H</td>
<td>7</td>
<td>5.0</td>
</tr>
<tr>
<td>TCLA.B6[R,L][7,8][1/2]</td>
<td>H</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>TCLA.A7[R,L][7,8][1/2]</td>
<td>H</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>Roman Pots</td>
<td>V</td>
<td>1/5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Old scheme

New scheme

hector.garcia.morales@cern.ch
A new collimation system has been introduced for the high-beta run at injection.

The idea is to reduce the background deposition in the forward detectors (ALFA/TOTEM roman pots) which have half-gaps of 3 sigmas.

It is based on a two stage collimation using tungsten collimators.

Primary collimator is at 2.5 sigma.

Secondary collimators at 2.7 sigma.

<table>
<thead>
<tr>
<th>Collimator</th>
<th>Plane</th>
<th>IR</th>
<th>Half gap (σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCLA.A6[L,R][7,7][1/2]</td>
<td>V</td>
<td>7</td>
<td>2.5</td>
</tr>
<tr>
<td>TCLA.A5[L,R][3,3][1/2]</td>
<td>V</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L.B1</td>
<td>V</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4R.B2</td>
<td>V</td>
<td>8</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L/R[1,1][1/2]</td>
<td>V</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>TCTPV.4L/R[5,5][1/2]</td>
<td>V</td>
<td>5</td>
<td>2.7</td>
</tr>
<tr>
<td>TCLA.C6[L,R][7,7][1/2]</td>
<td>V</td>
<td>7</td>
<td>2.7</td>
</tr>
<tr>
<td>TCP.D[L,R][1,1][1/2]</td>
<td>V</td>
<td>7</td>
<td>3.0</td>
</tr>
<tr>
<td>TCP.C6[L,R][3,3][1/2]</td>
<td>H</td>
<td>3</td>
<td>5.3</td>
</tr>
<tr>
<td>All TCNGs</td>
<td>H</td>
<td>3</td>
<td>6.3</td>
</tr>
<tr>
<td>TCLAs</td>
<td>H</td>
<td>3</td>
<td>9.0</td>
</tr>
<tr>
<td>TCSG.B4[L,R][7,7][1/2]</td>
<td>H</td>
<td>7</td>
<td>4.0</td>
</tr>
<tr>
<td>TCSG.B6[L,R][7,7][1/2]</td>
<td>H</td>
<td>7</td>
<td>5.0</td>
</tr>
<tr>
<td>TCLA.B6[L,R][7,7][1/2]</td>
<td>H</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>TCLA.A7[L,R][7,7][1/2]</td>
<td>H</td>
<td>7</td>
<td>8.0</td>
</tr>
<tr>
<td>Roman Pots</td>
<td>V</td>
<td>1/5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Clear reduction at RP location.
Collimation system for Special Physics run

- This scheme was recently tested during the Special Physics run.

- Real success: showed a reduction in beam induced background similar to the one predicted by simulations.

- Experiments recorded more than 1M events under very clean conditions.

- Crystal collimation was used for the very first time in an actual Physics run (only MD so far).

Important physics results very soon!

 Hector Garcia Morales
 hector.garcia.morales@cern.ch
Active halo control

- **RHIC e-lens test**
 - Electron lens is foreseen to be installed in HL-LHC for increasing the diffusion speed of particles in the tails.
 - To control tail population
 - First successful tests were carried out at Tevatron. Similar tests were carried out at RHIC in May08.
 - H.Garcia-Morales spent 10 days at RHIC doing tests. More details in Hector’s talk on Wednesday.
 - https://indico.cern.ch/event/742082/contributions/3085142/

- **Colored noise**
 - We can actively control the halo particles by using narrowband or colored noise excitation using the transverse damper (ADT).
 - Relying on the detuning with amplitude, tail particles have different tunes that particles of the core.
 - Precisely selecting the excitation frequency we can, in principle, excite particles in the tails while leaving the core unperturbed.
 - This technique was tested in two different MDs. The analysis of the data is still ongoing.

Radiation counts from RadMON detectors in the arcs (specifically selected ones) that show a correlation with luminosity (as opposed to current).
Novel collimation schemes

- Hollow electron lens studies for HL-LHC
 - Preparation of technical specifications, covering the relevant beam dynamics aspects
 - Participation and analysis of experimental tests at RHIC (invited talk at HB2018)

- Investigation for a possible insertion of crystal collimation in the HL-LHC baseline
 - Simulation, experimental test at the LHC and operational aspect in view on HL-LHC
 - Setup of the first operational use of crystal collimation during High Beta physics run!
 - See special crystal workshop Friday this week

Daniele.Mirarchi@cern.ch
Adaptive collimation system (task 2)

Aim: Various beam impact and loss scenarios can induce significant temperature gradients that cause deformation in collimator jaws. This can lead to a reduction in beam cleaning efficiency, which can have a detrimental effect on beam dynamics. This has led to the development of a new Adaptive Collimation System (ACS). The ACS is a re-design of a current collimator already in use at CERN, for use in the HL-LHC. The ACS will incorporate a novel fibre-optic-based measurement system and piezoceramic actuators mounted within the body of the collimator to maintain jaw straightness below the 100µm specification. These two systems working in tandem can monitor, and correct for, the jaw structural deformation for all impact events.

Objectives:

1. Quantify extents of jaw deformation under different scenarios, including vibrational frequency and amplitude.

2. Integrate robust active measurement system and dynamic actuation system into existing secondary collimator design, ensuring new systems can withstand harsh LHC environment.

3. Manufacture full size prototype ACS collimator for primary validation at UoH and future trials at CERN.
Adaptive collimation system (task 2)

• Prototype Design (D1.11 Oct 2018)
 • Status – Design complete
• Prototype Manufacture (M1.14 Mar 2019 – On-track)
 • Tank – All parts in Production
 • Drive system – All parts in production
 • Stand – Completed
 • Jaws – Drawings Produced
 • Cooling system – Drawings Produced
• Key out-sourcing
 • Vacuum system – received
 • Cooling System – received
 • Jaw Blocks Ordered
 • Glidcop Blanks – TBO
 • Actuation system – In technical review at Pi Ceramic GmbH
 • Front Stiffener and Cooling Pipes – CERN TBC

T.Furness@hud.ac.uk
Actuation System

Jaw scale model: to validate control and fibre optic measurement systems, as well as prove actuation design principles.

- Actuation System

Jaw Design, prototype, Validation, Simulation

1292mm

95m m

92m m

Final Geometry displacement

0 200000 400000 600000 800000 1000000

Displacement (µm)

Jaw length (µm)

ACT only

BEAM only 0.2BLT

CORRECTION

STEADY STATE

T.Furness@hud.ac.uk
'The Big Bang Experience' lecture at the Royal Holloway Science Festival 2018. Repeated at this year's 'Girls into Physics' residential for GCSE and A-level students.

robert.appleby@manchester.ac.uk
Studies for HL-LHC

- Merlin used to calculate loss maps for future LHC configurations
- Novel collimation options
 - Hollow Electron lens
 - Active halo cleaning

Hollow electron lens

HiLumi IP1/5 $\beta^*=15,20,25\text{cm (2 TCLDs)}$

Next steps
- Active halo control with transverse damps
- ATS optics
- Non-linear multipoles
WP1: Collimation simulations

- LHC stored energy of 362 MJ per beam (675 MJ for HL-LHC)
- Multi-stage collimation system needed
- Particles scattered by collimators can travel many km along beam pipe
- Carbon primary collimators in IR7 sit closest to the beam
- Secondary collimators (carbon) and absorbers (tungsten) intercept the scattered particles
- Tertiary collimators (tungsten) protect the detectors and the inner triplets

Simulations

Want study
- Loss distributions around ring
- Performance of collimator configurations
- Effects of optics changes, collimator materials and novel collimation schemes

Merlin++

- Accelerator simulation library
- Modular and extensible C++: easy to add new physics, tracking, element types
- 40,000 Lines of code (+4000 of examples, +3000 tests)
- Git revision control (github.com/MERLIN-Collaboration)
- Advanced scattering models
Merlin++

Code base thoroughly profiled/significantly improved upon

• Static Analysis
 → Cyclomatic Complexity
 → Logical Source Lines Of Code
 → Efferent Coupling

• Dynamic Analysis
 → Runtime Bottlenecks
 → Memory Leaks
 → Speculation Misses

• Architectural Debt
 → Design Structure Matrix
 → Decoupling Level
 → Propagation Cost
 → Unhealthy Inheritance
Jaw design and validation system

Induced vibrational response around 150Hz, measurement system captures at 1kHz, and actuation rise time 86\(\mu\)s (1.1kHz)
Jaw scale model: to validate control and fibre optic measurement systems, as well as prove actuation design principles.

Fibre coatings: to increase amount of reflected light in the system to increase sensitivity.

Surface coating: to ensure actuation contact regions do not wear and produce debris, several coatings are going to be trialed to ensure reduction in wear and friction.
HL-LHC-UK WP1: Collimation

Task 1: Simulation and novel concepts:
University of Manchester/CI/RHUL/Hudd/CERN

- **Aim:** Explore collimation performance, develop new tools and create novel collimation schemes.

 - Design of two-stage collimation schemes, active halo control, tested experimentally.
 - Analysis of run 2 loss maps and verification of HL-LHC collimation scheme performance.
 - New code development: MERLIN (and BDSIM)

Task 2: Adaptive collimation system (ACS)
University of Huddersfield

- **Aim:** Develop a reactive Collimator to compensate for thermal jaw deformation.

 - Prototype design complete and being manufactured.
 - Design validated in full Simulation suite.

HL-LHC-UK phase 2
Manchester and RHUL will perform beam related measurements in run 3, tied to an operation-focus simulation programme, and develop the novel collimation layouts and hardware.