

Run III Layout and Performance for Protons

A.Mereghetti, on behalf of the LHC Collimation Team

Outline

- Recap of Run III Layout:
 - TCSPM design and 2017 measurements with beam
 - Removal of MQWA.E5[L,R]7 and installation of shielding
 - TCLDs and load on downstream cold elements
- Expected performance in Run III:
 - Possible Run III optics
 - Outlook to HL-LHC v1p4
- Conclusions

Outline

- Recap of Run III Layout:
 - TCSPM design and 2017 measurements with beam
 - Removal of MQWA.E5[L,R]7 and installation of shielding
 - TCLDs and load on downstream cold elements
- Expected performance in Run III:
 - Possible Run III optics
 - Outlook to HL-LHC v1p4
- Conclusions

Overview of the Upgrade of the LHC

Collimation System

- Partial HL-LHC Upgrade* (during LS2):
 - Exchange of 2 IR7 TCPs (60cm): from CFC to MoGr;
 - Addition/Exchange of 4 IR7 TCSs (1m): from CFC to Mo-coated MoGr;
 - A single module MBH(11T)+TCLD+MBH(11T) in IR7 (p+ions) and a single TCLD in IR2 (ions only);
 - Exchange MQWA.E5[L,R]7 with shielding (reduce dose to MQW coils and spacers);
- Run III
- Full HL-LHC Upgrade* (during LS3):
 - Exchange remaining TCSGs (7);
 - IR1/IR5 TCTPs (1m):
 - Cell 4: from Inermet180 to CuCD (4);
 - Cell 6: TCTPHs in CuCD (2) + re-use TCTPVs in Inermet180 (2);
 - New TCLs (6);

* Units are given per beam.

New design of TCTPH.4 and TCL.4, with two beams in same tank!

A good fraction of the HL-LHC collimation hardware already available in Run-III, for gaining experience with LIU Beams!

A.Mereghetti, 16 Oct 2018, HLLHC Annual Meeting, CERN (CH)

Recap of TCSPM Design

addition of in-jaw BPM monitors

- TCSPM: new design of TCS collimators:
- "metallic" jaw, i.e. lower impedance
- MoGr jaws should stand the same BLT minima as for the nominal LHC:
 - 1MW in case of 0.2h beam life time over 1-10s (Nominal LHC: 500kW);
 - 200kW in case of 1h beam life time in steady state (Nominal LHC: 100kW);
- Mo-coated jaws: reduce impact on machine impedance budget (spare octupole current);
- TCSPM flatness not granted for 12m beam lifetime:
 - Estimation done looking at the most loaded secondary collimator in IR7 (i.e. immediately downstream of the TCPs);
 - Deformation computed linearly combining (pessimistic) thermal expansion, self-weight (V) and tolerances → check performance in simulations in presence of jaw deformations;

	Gap at concerned collimator is not the smallest among all TCSs → 100 taken not exactly strictly;					µm specs may be Gi Stalk Structural Stiffener (80007W) to 2X Directional Deformation 2A cel Spic (Steelinal Deformation (A cel Sibial Conductinal Styleters)		
		1h beam lifeti	me	0.2h beam	lifetime (DES	IGN GOAL)	Time: 1 27/04/201/ 2000	WHO !!
	TCSP _{CFC} (LHC)	TCSPM _{CFC} (HL-LHC)	TCSPM _{MoGr} (HL-LHC)	TCSP _{CFC} (LHC)	TCSPM _{CFC} (HL-LHC)	TCSPM _{MoGr} (HL-LHC)		
Stresses	OK	OK	OK	OK	OK	ОК	-0.51983 Min	F.Carra,
Total sagitta	+83	-110	+76	+96	+300	+505	130	G.Gobbi et al

Staged implementation, avoiding the most loaded slot and giving further time to optimize eng. design

Cooling pipes

Courtesy of F. Carra

Counter plate

Clamps

Validation of Design: Installation of TCSPM Prototype and measurements with beam

- During YETS 2016, a prototype of TCSPM was installed (<u>LHC-TC-EC-0006</u>) in slot D4R7.B2 (V TCSG) for tests with beam to finalise design:
 - Smallest beam σ among TCSGs → ideal for impedance measurements;
 - Presence of a regular TCS in CFC in same slot, for direct comparisons;
 - Three stripes of different materials, to assess effect of coating on impedance;

Extensive MD campaign of tune-shift measurements in 2017, to benchmark

expectations from impedance models;

TIN Mo

...though measurements with Mo constantly x2 expectations

...possible explanation: surface roughness / non-regular column structure of Mo coating, with effects on impedance → ongoing investigations (G.Mazzacano, CERN, BE-ABP-HSC)

Challenging measurements, with sensitivity of $\Delta Q \sim 2 \cdot 10^{-5}$!

HC Annual Meeting, CERN (CH)

Installation Slots of TCSPMs

- Slots of installation of the 4 TCSPMs chosen among a pool of 4 possible ones (CERN-ACC-2017-0088, in preparation):
 - Reduce impedance as much as possible collimators with largest contribution on both H and V plane);
 - Avoid first two skew collimators most exposed to steady-state losses;
 - Avoid H and V secondary collimators ABD + inj. failures; 3.
 - Avoid H secondary collimators only ABD;

Chosen one: option 2

50% of the expected impedance reduction can be achieved exchanging only 4 collimators;

Option 2 favored over the others since no TCSPM installed in most loaded location, giving time to further optimize design;

Cleaning performance evaluated for each option, but no major differences found (A. Mereghetti, 2017 HL-LHC annual meeting);

B1	B2	
TCSG.D4L7	TCSG.D4R7	exchange
TCSPM.B4L7	TCSPM.B4R7	addition
TCSPM.E5R7	TCSPM.E5L7	addition
TCSPM.6R7	TCSPM.6L7	addition

Courtesy of S.Antipov

Partial upgrade of secondaries in IR-7

14

12

FLUKA simulations;

Loading on coating layer still

to be evaluated with detailed

Removal of MQWA.E5[L,R]7 and Installation of Shielding

- Removal of MQWA.E5[L,R]7:
 - Module subject to highest load from IR7 losses (integrated dose);
 - Measurements and simulation campaign to estimate loads for present LHC and for HL-LHC (F.Cerutti and P.Fessia, HL-LHC TCC #14);
 - Proposal (P.Fessia et al): remove the module and propose solution to limit load on following module:
- New IR7 optics by R. Bruce (HSS Section Meeting, 12th Dec 2017):
 - MQWB.5 reconfigured as MQWA, in addition to MQWA module removal
 - Re-matching to arc optics;
 - Verification of cleaning performance (D. Mirarchi);
- Large simulation campaign (C.Bahamonde et al.), to propose shielding solutions – currently: tungsten masks at each magnet + iron shielding (2m):
- Final design presented by L. Gentini, ColUSM 31/08/2018;

Courtesy of R. Bruce, HSS section meeting (2017-12-06)

Total peak dose accumulated by the end of HL-LHC

Courtesy of C. Bahamonde. ColUSM, 2018-06-01

 Δ ssuming 8.4 x 10¹⁶ protons lost in IR7 for the whole HL-LHC nominal operation R. Garcia Alia, 7th HL-LHC Collaboration Meeting, 15/11/17

HLLHC Annual Meeting, CERN (CH)

TCLDs

- During LS2, it is planned to install a single module MBH(11T) + TCLD(Inermet180) + MBH(11T) in DS downstream of IR7 (protons / ions) per IR7 side:
 - Position currently considered: MB.B8x7 → Second unit (Q10) initially foreseen removed with 2016 re-baselining;
 - In IR2, only TCLD collimator in connection cryostat;

- Large simulation campaign (D.Mirarchi, P.D.Hermes, C.Bahamonde et al.), for optimizing position of TCLD package:
 - Cleaning performace (SixTrack);
 - Endep in magnets downstream of TCLD collimators (FLUKA):
 - Quench limit due to peak endep in SC coil;
 - Total endep in coils and cold bore tube (specific to 11T dipole);
 - Total power on cryogenics;

Input relevant for evaluations of cryogenics performance and adequacy to loss scenarios

TCLDs (II)

- Cryogenics experts have checked that thermal design of 11 T is sufficient 1h BLT scenario is fine, and 0.2h BLT scenario can be tolerated only for short times;
- Limitations from the cryogenics system still need further investigations:
 - 1h BLT: cooling of cells 10 & 11 MB-dipoles could be critical with ions;
 - 0.2h BLT: adiabatic T-rise of 11-T-dipole coil (to be evaluated);

Intermediate 11T dipole specific summary for proposed beam-Lifetime scenarios (MBB.B8)

Continuous cooling ←→ Blt 1h

	Peak power (mW/cm³)	11T: coil + beam-pipe (W)	11T total (W)	comment
Protons	2	12	34	& (< 50 mW/cm ³ and < 41 W, total < 60 W)
lons	4	21	66	& (< 50 mW/cm³ and < 41 W total close to 60 W)

For the 1h Blt the 11T dipole thermal design is sufficient

Courtesy of R. van Weelderen, TCC meeting (2018-08-02)

Intermediate 11T dipole specific summary for proposed beam-Lifetime scenarios (MBB.B8)

Transient cooling ←→ Blt 12min

	Peak power (mW/cm³)	11T: coil + beam-pipe (W)	11T total (W)	10 s Energy (kJ)/(k J/m)	comment
Protons	11	58	170	1.7/0.3	< 50 mW/cm ³ coil > 40 W, total > 60 W
lons	21	105		3.3/0.6	< 50 mW/cm ³ coil > 40 W, total > 60 W

For the 12min Blt the 11T dipole thermal design is ok for peak power on coil - but overall temperature will drift during transient

Outline

- Recap of Run III Layout:
 - TCSPM design and 2017 measurements with beam
 - Removal of MQWA.E5[L,R]7 and installation of shielding
 - TCLDs and load on downstream cold elements
- Expected performance in Run III:
 - Possible Run III optics
 - Outlook to HL-LHC v1p4
- Conclusions

Expected Performance in Run III – 2017

- Expected performance of IR7 in Run III already presented in HL-LHC annual meeting in 2017:
 - Comparative assessment of IR7 cleaning inefficiency for the four possible post-LS2 configurations considered for installation;
 - IR7 settings: 2σ-retraction (i.e. TCPs@5.7σ, TCSGs@7.7σ);
 - Optics: v1p3:
 - β *=15cm, no TCLD installed \rightarrow max η (s) at IR7 DS1;
 - β *=6m, TCLD installed + removal of MQWA.E5[R,L]7 \rightarrow max η (s) at IR7 DS2;

Simulated Scenario	None	C-1	C-2	C-3	C-4	post–LS3	:
	$[10^{-6}]$	$[10^{-6}]$	$[10^{-6}]$	$[10^{-6}]$	$[10^{-6}]$	$[10^{-6}]$	
$\beta^* = 15 \text{ cm}, B1H$	6.19	5.77	6.38	6.11	5.73	6.23	6.07±4%
$\beta^* = 15 \text{ cm}, B1V$	5.33	5.12	5.17	5.32	5.07	5.34	6.07±4% DS1 5.23±2%
$\beta^* = 6 \text{ m, B1H}$	2.47	2.41	2.45	2.34	2.35	2.25	2.38±3% DOO
$\beta^* = 6 \text{ m, B1V}$	3.73	3.52	3.55	3.70	3.58	3.84	2.38±3% DS2

Very little impact on cleaning inefficiency from TCSPM installation layout for the same settings (as expected)

Expected Performance in Run III – 2018

- Present TCSPM installation foresees to actually replace only 1 TCSG (.D4[L,R]7) out of 4;
- The other 3 TCSPMs are added immediately downstream of respective TCSGs;
- It would be possible to run with TCSGs and installed TCSPMs at the same time or separately;

B1	B2	
TCSG.D4L7	TCSG.D4R7	exchange
TCSPM.B4L7	TCSPM.B4R7	addition
TCSPM.E5R7	TCSPM.E5L7	addition
TCSPM.6R7	TCSPM.6L7	addition

- Set of simulations aimed at assessing variations in cleaning performance if TCSPMs and/or TCSGs are used:
 - Studies focused on a first version of possible Run III optics, developed in the framework of the Run III Configuration WG;
 - Flat optics (50cm/15cm) considered in MDs, found to be more challenging in terms of aperture margins;
 - 2018-like collimator settings (pushed performance) vs HL-LHC-like settings (more relaxed settings, especially on impedance);
 - CRDS beam process, i.e. telescope with tele-index at ~2.5 → increased effectiveness of octupoles in stabilizing the beam;
- Run III optics does not incorporate the new one of IR7;
 - Quick look also at HL-LHC v1p4, to focus mainly on new IR7 optics;

Simulation Settings

optics:

• Run III Flat (β *=50cm/15cm);

• HL-LHC v1p4 (β *=15cm, with IR7 optics);

7 TeV, B1H / B1V only, 0.04σ halo;

2018 OP-like settings vs HL-LHC baseline;

New: aperture and offset directly from MADX when generating fort.2!

→ Preliminary results!

IR	Coll Family	HL-LHC [ε=2.5μm]	HL-LHC [ε=3.5μm]	2018 OP-like [ε=2.5μm]	2018 OP-like [ε=3.5μm]
IR7	TCP/TCS/TCLA/TCLD	6.7/9.1/12.7/16.6	5.7/7.7/10.7/14	5.9/7.7/11.8/16.6	5/6.5/10/14
IR3	TCP/TCS/TCLA	17.7/21.3/23.7	15/18/20	17.7/21.3/23.7	15/18/20
IR6	TCDQ/TCSP	10.1/10.1	8.5/8.5	8.6/8.6	7.3/7.3
IR1/5	TCT/TCL	10.4/14.2	8.8/12	9.5/17.7	8/15
IR2	TCT	43.8	37	35.5	30
IR8	TCT	17.7	15	35.5	30

In 2018 operation we actually had: 8.50@30cm, 7.80@25cm

In 2018 operation we actually had: 375@IR2, 155@IR8

Results – LMs – Run III Flat, OP-2018 Like Settings, B1H

Results – Cleaning Inefficiencies

B₁V

B1	B2	
TCSG.D4L7	TCSG.D4R7	exchange
TCSPM.B4L7	TCSPM.B4R7	addition
TCSPM.E5R7	TCSPM.E5L7	addition
TCSPM.6R7	TCSPM.6L7	addition

- 18 simulated cases:
 - TCSGs and TCSPMs vs only TCSGs vs only TCSPMs;
 - 2018-OP like settings vs HL-LHC settings;
 - B1H / B1V;
 - Run III Flat vs HL-LHC v1p4;
- Little variation in cleaning inefficiency when choosing between TCSGs and TCSPMs (as expected);
- Worse cleaning inefficiency with HL-LHC settings than with 2018-like settings (as expected);

Results – Collimator Losses – B1H

Run III Flat optics

B1	B2	
TCSG.D4L7	TCSG.D4R7	exchange
TCSPM.B4L7	TCSPM.B4R7	addition
TCSPM.E5R7	TCSPM.E5L7	addition
TCSPM.6R7	TCSPM.6L7	addition

- TCSGs and TCSPMs vs only TCSGs vs only TCSPMs;
- 2018-OP like settings vs HL-LHC settings;
- B1H / B1V;
- Run III Flat vs HL-LHC v1p4;

TCSGs + TCSPMs:

- TCSPMs in shadow of upstream TCSG;
- Least load on TCLAs and TCLD:

TCSGs only:

- Highest load on TCLAs and TCLD;
- No major differences in patterns between 2018-OP-like and HL-LHC settings, or between Run flat and HL-LHC v1p4;

Asymmetric Collimator Settings

- Impedance of collimation system is comfortably under control in Run III (N. Mounet, 5th Run III Config .WG meeting:
 - Partial IR7 collimator upgrade (4 TCSPMs/beam) introduces already 50% of gain from full upgrade (11 TCSPMs/beam);
 - CRDS with tele-index of ~2.5 enhances the octupole effectiveness;
 - Ok for pushed settings (as in 2018-OP) with beam brightnesses foreseen for Run III;
- In 2018, asymmetric collimator settings explored in simulations and MDs as a mean to further decrease collimator impedance at the expenses of limited worsening of cleaning inefficiency;

for B1, whereas discrepancies are found on B2;

→ To be understood:

Estimation of impedance reduction based on resistive wall term, dominant for LHC collimators;

ADT = 100 turns; Intensity = 1.4e11; ε = 2.0 um

sigmaz = 0.081 m; 1 bunch; x plane

→ To be refined, in view of Run III and (especially) HL-LHC, for having a final word;

Octupole current threshold

(LHC)

Considered asymmetric configurations (IR7):

- TCPs (C1/C2);
- The 4 TCSGs of the LS2 upgrade (NPNN/ANTI-);
- Almost all IR7 TCSGs (MANY/ANTI-);

s; ially) HL-

C2+NPNN

Annual Meeting, CERN (CH)

Outline

- Recap of Run III Layout:
 - TCSPM design and 2017 measurements with beam
 - Removal of MQWA.E5[L,R]7 and installation of shielding
 - TCLDs and load on downstream cold elements
- Expected performance in Run III:
 - Possible Run III optics
 - Outlook to HL-LHC v1p4
- Conclusions

Conclusions

- LS2 will see the installation of the partial LHC Collimation Upgrade for HL-LHC:
 - Many changes already taking place during LS2;
 - Extended and detailed studies to converge on present baseline;
 - Different areas covered (e.g. cleaning performance, thermo-mechanics, cryogenics, radiation to equipment, ...);
 - Many thanks to all teams involved!
- It will be possible to get acquainted to the new HL-LHC hardware already in Run III;
 - The staged installation of the TCSPMs (4/beam in LS2) will allow a further improvement of the design (e.g. to decrease the collimator sagitta for 0.2h BLT);
- Sound hardware for a good start-up in Run III:
 - More robust TCPs / TCSGs;
 - (Mo-coated) MoGr jaws will limit impact on impedance;
 - It should be possible to swallow the LIU beams once available in the LHC;

Thanks a lot!

Results – Collimator Losses – B1V

Run III Flat optics

B1	B2	
TCSG.D4L7	TCSG.D4R7	exchange
TCSPM.B4L7	TCSPM.B4R7	addition
TCSPM.E5R7	TCSPM.E5L7	addition
TCSPM.6R7	TCSPM.6L7	addition

18 simulated cases:

- TCSGs and TCSPMs vs only TCSGs vs only TCSPMs;
 - 2018-OP like settings vs HL-LHC settings;
- B1H / B1V;
- Run III Flat vs HL-LHC v1p4;

TCSGs + TCSPMs:

- TCSPMs in shadow of upstream TCSG;
- Least load on TCLAs and TCLD:

TCSGs only:

- Highest load on TCLAs and TCLD;
- No major differences in patterns between 2018-OP-like and HL-LHC settings, or between Run flat and HL-LHC v1p4;

HL-LHC settings

Results – LMs – Run III Flat, OP-2018 Like Settings, B1V

Results – LMs – Run III Flat, HL-LHC Settings, B1H

Results - LMs - Run III Flat, HL-LHC Settings, B1V

Results - LMs - HL-LHC v1p4, B1H

Results - LMs - HL-LHC v1p4, B1V

