Computational Science at BNL

Francis J. Alexander
Deputy Director
Computational Science Initiative

BNL is a Data Driven Science Laboratory: HEP Data is the largest component

- BNL provides Data-rich Experimental Facilities:
 - RHIC Relativistic Heavy Ion Collider supporting over 1000 scientists world wide
 - NSLS II Newest and Brightest Synchrotron in the world, supporting a multitude of scientific research in academia, industry and national security
 - CFN Center for Functional Nanomaterials, combines theory and experiment to probe materials
 - ATF Accelerator Test Facility
 - LHC ATLAS Largest Tier 1 Center outside CERN
 - ARM Atmospheric Radiation Measurement Program - Partner in multi-side facility, operating its external data Center
- BNL supports additional large scale Experimental Facilities:
- Belle II Computing for Neutrino experiment
 - QCD Computing facilities for BNL, RIKEN & US
 QCD communities

RHIC

NSLS II

CFN

ATLAS

QCD

Computational Science Initiative (CSI)

- Established December 2015
- Vision
- Translating leading Computer Science and Applied Mathematics research into measurably improved scientific discovery processes
- Focus
- Data analysis, numerical modeling, support for experiments, reusable knowledge repositories
- Organizational Structure
- Scientific Data and Computing Center
- Computer Science and Applied Math Research
- Computational Science Laboratory
- Center for Data Driven Discovery
- Computing For National Security

Approaching ~90 staff and students

CSI's new home, including proposed new Data Center (CFR)

Key research initiatives:

Making Sense of Data at Exabyte-Scale and Beyond

- Real-Time Analysis of Ultra-High Throughput Data Streams
 - Integrated, extreme-scale machine learning and visual analytics methods for real time analysis and interpretation of streaming data.
 - New in situ and in operando experiments at at large scale facilities (e.g., NSLS-II, CFN and RHIC)
 - Data intensive science workflows possible in the Exascale Computing Project
 - · Analysis on the Wire
- Autonomous Optimal Experimental Design
 - Goal-driven capability that optimally leverages theory, modeling/simulation and experiments for the autonomous design and execution of experiments
 - Complex Modeling Infrastructure
- Interactive Exploration of Multi-Petabyte Scientific Data Sets
 - Common in nuclear physics, high energy physics, computational biology and climate science
 - Integrated research into the required novel hardware, system software, programming models, analysis and visual analytics paradigms

Impactful Machine Learning

- Research Leaders in extreme scale, science specific new Machine Learning Methods
- Joint Research Center for Machine Learning @ Scale with Carnegie Mellon University
- Successful applications
 - Advanced analysis deployed at several NSLS-II beamlines and CFN instruments
 - Decipher in real time the size and shape of catalysts from X-ray absorption spectra – enable catalyst optimization during experiment
 - BNL algorithm originally developed for ASCR achieved nearly 100% Alzheimer's detection accuracy and 83% prediction accuracy for early-stage Alzheimer's. The algorithms were trained on magnetic resonance imaging and brain phenotyping clinical data. Further application to VA and BER Kbase.

Healthy Control

Alzheimer's Disease

Artificial Intelligence-driven Optimal

Experimental Design under Uncertainty and

with Limited Resources

Example problems

- Improve biofuel yield for algal systems
- Determine phase diagrams for complex materials
- Use HPC resources efficiently for costly biomolecular simulations
- Optimize RHIC Beam Energy Scan data taking strategy

DOE/VA Pilot Projects benefit both Departments

HPC, modeling/simulation and large scale data analysis to VA data to improve healthcare for our Veterans Develop scalable machine learning algorithms for challenging problems in DOE

- Enhanced prediction and diagnosis of Cardiovascular Disease (CVD)
 - Develop methods to inform individualized drug therapies to prevent, pre-empt and treat CVD.
 - Enhance prediction, diagnosis and management of major CVD subtypes in Veterans
- Precision discrimination of lethal from nonlethal Prostate Cancer
 - Build improved classifiers to distinguish lethal from non-lethal prostate cancers.
 - Reduce unnecessary treatments /provide an increased quality of life for patients
- Patient-specific analysis for Suicide Prevention
 - Provide tailored and dynamic suicide risk scores for each Veteran at risk.
 - Create a clinical decision support system that assists VA clinicians in suicide prevention efforts, and helps to evaluate effectiveness of various prevention strategies.

- · Scalable Algorithms for
 - Binary and Multiclass classification
 - Data Imputation (for missing data)
 - Imbalanced data problems with constrained resources
- Integrating large multimodal data sets (>20M patients)
 - Images
 - Mechanistic biological models
 - Full Genomes
 - Longitudinal Data
- UQ and error analysis (skill assessment)
- Potential Applications to many DOE programs in
 - Genomics
 - Climate state assessment
 - Prediction of Complex Systems Behavior

SciDAC HEP project

- Task: Predict CMB foreground using 21cm Hydrogen line.
- Assumption: CMB foreground is dominated by dust thermal radiation. The distribution of dust and Hydrogen atoms in the cosmos are almost the same.
- Input: 50 Hydrogen maps of different frequencies
- Output: CMB foreground
- The result is shown with Fourier power spectrum.
- U-Net based model is proposed with loss function defined as negative cross correlation of the Fourier power spectrum plus image L1 Loss as regulation.

U-Net:

The dark spots are point source mask, including pulsar, galaxy.

Preparing Lattice QCD for Exascale Computing: Software and Algorithms

Chulwoo Jung, Meifeng Lin with contributions from Peter Boyle, Yong-Chull Jang and Christoph Lehner

Lattice QCD at Exascale

Lattice QCD simulations are numerically demanding, and require sustained use of a large portion of the existing DOE leadership-class computers. With exascale computing resources, we expect to

- Increase the precision of critical calculations to understand the fundamental symmetries of the universe and the structure of matter, such as CP violations, muon g-2 (muon anomalous magnetic moment), the internal structure of protons, etc.
- Extend the calculations of the light nuclei and multi-nucleon systems in nuclear physics with quark masses that are closer to their values in nature. For example, first-principle simulations of the Helium nucleus.

Software Requirements

- Efficiency: Should be able to effciently exploit the expected multiple levels of parallelism on the exascale architectures. Need to conquer the communication bottleneck.
- Flexibility: Should be flexible for the users to implement di
 —erent algorithms and physics calculations, and can provide easy access to multi-layered abstractions for the users.
- Performance Portability: Should be portable to minimize code changes for different architectures while maintaining competitive performance.

The vision: BNL as a hub for next-generation quantum information science in the Northeast

NeQSys: Northeast Quantum Systems

Provide an collaborative environment for research integration across the spectrum of activities from materials to computational applications

Potential activities

- Joint Appointments
- Visiting Faculty
- Student/postdoc exchanges RE's
- Workshops
- Colloquia
- Summer School
- University inter-movement
- Masters Degree in QC
- Problem Market

New York State has made Strategic Investments in Brookhaven National Lab

- \$65 million over five years to support three transformative projects:
 - Build high-energy x-ray beamline at NSLS-II, enabling researchers/industry to map the three-dimensional structure of batteries and energy-storage materials in real time, under real operating conditions (\$25 million)
 - Advance Lab's "Big Data" computation capabilities with focus on NSLS-II, which will generate enormous amounts of data (\$15 million)
 - Build prototypical ERL facility for the technical design of a future electron-ion collider, transforming RHIC into eRHIC (\$25 million)

RecentAdditions:

- A new \$15M grant to develop a Cryo Electron Microscopy Center with NSLS-II for biological studies
- A \$20M addition to the LIRR budget to relocate the Yaphank station to BNL

The CSI Compute Center upgrade will receive \$30M in FY18

Secure Computing (Various levels incl PHI)

Laboratory Space of a variety of kinds Potential for 14MW of Power

Thank you

