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Disclaimer: Performance numbers (CPU, Memory) given 
in this talk are indicative 

Depend on data being processed and hardware 



Calorimeters in the ATLAS Detector
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The basic principles of calorimetry

• Calorimeters are built out of dense material 

• In case of ATLAS these are Lead, Iron and Copper interleaved with active material like Liquid Argon or 
scintillating plastic “tiles” -> “Sampling Calorimeter”  

• Incoming particles create a shower of secondary particles that is (ideally) completely absorbed inside the 
calorimeter 

• While traversing the active material, the ionising particles in the shower leave a signal that is read out 
electronically 

• This signal is proportional to the energy of the incoming particle   

• The showering is a stochastic process!
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• Two types of calorimeters: 

• Electromagnetic calorimeter: Measures the energy of 
photons and electrons 

• Hadronically interacting particles (like pions) typically 
create a shower that penetrates the EM calorimeter and 
leaves most of its energy in the hadron calorimeter that is 
located behind the EM calorimeter



Calorimeter Technologies in ATLAS

Important for the software:   
Huge number of readout channels (fine detector granularity)
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Electrode
Absorber

Absorber

EM-Barrel: Liquid Argon in accordion-geometry:  
Perfectly hermetic coverage in phi

Hadronic Barrel:  
Tile-Calorimeter Sub-Calo Nbr of Channels

EM Barrel (LAr) 109696

EM Endcap (LAr) 62208

Had Endcap (LAr) 5632

Had Barrel (Tile) 5184

Forward (LAr) 3524

Total: 186244

All calorimeter 
cells are read 
out on every 
event



Detector Simulation of the Calorimeter
• Traditional detector simulation (using the Geant4 simulation 

software) tracks every particle in the shower through the 
accordion-geometry and simulates the energy deposit in the 
active material 

• Because of the large number of particles in the shower, this is 
very CPU-intensive 

• Fast-Calo simulation: An approximation of the detailed shower 
simulation that is much less CPU-intensive 

• See Heather’s talk this afternoon 
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Calorimeter Readout & Data objects
• Ionization signal (red) is shaped (blue) and digitized at four points.   
• Peak is determined by the Optimal Filtering method 

• Real Data: Done by a DSP part of readout electronics 
• Simulated data: Done (after smearing with electronic noise) 

done as part of the Digitization 
• For each cell, we store energy (prop. Amplitude) 

• For cells with energy above a threshold (usually 5 sigma-
noise), we also store the time and a quality-factor (how well the 
pulse shape matches the expected one)
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LAr(Tile)Hit LAr(Tile)Digit LAr(Tile)RawChanel CaloCell CaloCluster

Simulated
• Energy  
• Time 
• Identifier

t

• ADC samples 
• readout-Identifier

• Energy 
• Time 
• Quality 
• readout 

Identifier

Calibrated  
• Energy 
• Time 
• Quality 
• Identifier 
• ptr to DetDescr 

• Energy 
• Time 
• Location/Direction 
• Variable list attributes 

Reconstruction Digitization / Real Detector  

A



Some data size estimates

• In ByteStream (what comes out of the detector) LAr+Tile is 
about 850 kBytes/event (>50% of the total)  

• The CaloCell container in the output file is highly-compressed 
260kBytes/Event 

• In memory (back-of-the-envelop calculation) ~ 5.3 MBytes 

• Not counting the static geometry information  

• LArRawChannel: (back-of-the-envelop calculation)  ~4.4 MBytes 

• Clusters have too many dynamic attributes to make any 
generally-valid size estimate
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Real Data: LArRawChannel Building

• For almost all cells, the Energy is already computed by the 
readout electronics and written as such to the byte-stream 

• For high-energy cells (>5 sigma-noise) we store also the 
raw ADC samples and re-reconstruct the cell-energy offline.  

• Slightly better precision, in particular time and quality 

• Allow corrections if the calibration used online is found to 
be less-than-optimal  

• Tiny CPU usage (<10ms/event) but need some 80MByte 
RAM to store the electronic calibration constants. 

 8



Digitization: Simulate detector 
electronics for simulated data

For calorimeters, that means: 

1. Convert Hits (simulated energy deposits) to Digits (‘fake’ ADC samples)  

• Sum hit-energies from signal and pile-up (concurrent collision) events 

• LAr: Simulated cross-talk btw neighbouring cells by moving some fraction of 
the energy to their neighbour 

• Convert Energy to ADC counts  

• Create ADC-samples by scaling the known pulse-shape with the energy 

• Smear the samples with the (known) electronic noise  

2. Apply the Energy reconstruction like done for real data  

• Get the signal peak using optimal filtering, convert ADC to MeV values 

• Result is an LAr/TileRawChannelContainer like the one read from RAW data 

• LArPileUpTool (main digitisation tool) takes about 1 sec for mu=40
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With ideal 
electronics w/o 
noise or cross-

talk   
we would end 

up with the 
same number



Cell-Building
• Re-organizing the data read from ByteStream (or digitized RDO) so that we have a 

complete and ordered container of CaloCells  

• Organised by “offline hash” (index)  

• Mask cells known to suffer from pathological noise  

• Apply corrections for:  

• High-Voltage variations or HV trips  

• Baseline-shift due to LHC bunch structure 

• Patching of known dead cells based on their neighbours  

• Hooks for ad-hoc corrections of energy or time (mostly not needed) 

• In a recent real-data (Tier-0) reconstruction job of data taken this year, this steps takes 
about 200 ms/event (out of ~20 sec total event processing time)  

• No dependency on pile-up (how busy the event is), since we are always processing 
all cells anyway
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Cells are (almost) independent of 
each other: Could run building of 
each cell in parallel  
Exception: Neighbour patching  



Calo-Cluster Algorithms
• One particle hitting the calorimeter creates a shower that spans several calorimeter cells 

• The fine granularity allows us (among other things) to distinguish showers from different particles 

• Summing the energy of these cells to reconstruct the energy and direction of the incoming particle is 
known as Clustering 

• Two basic strategies:  

• Topological clustering: Start from a high-energy seed cell and cluster neighbouring cells 
depending on their signal/noise ratio 

• Used hadronic clusters (jets) 

• Fixed-size clusters: Found by sliding-window algorithm, maximising the energy in the window  

• Used for electrons and photons (aka egamma objects) 

• Clusters may overlap, leading to cells being shared between clusters 

• The input to clustering is the full container of all ~190k calorimeter cells 

• The cluster energy (and position) is then corrected/calibrated for a things like the energy lost upstream 
of the calorimeter or the impact point.  

• These corrections usually rely an calibration contents read from a database 

• Topo-Cluster algorithm (+ corrections) takes about 130 ms/event 

• egamma-clustering takes about 15ms/event     
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Conditions data required
• For simulated data, the conditions are fixed for the entire job 

• And in some cases we assume phi-symmetry to save memory 

• For real data reco, we rely on more detailed and measured conditions:  

• For every cell, no symmetry assumptions 

• Evolution over time, sometimes changing within one reconstruction job 

• Examples: 

• List of known problematic channels  

• Measured High-Voltage values, in particular when a HV-line trips (happens few times 
per run)  

• Noise (electronic and pile-up), needs to be re-scaled if HV changes 

• Luminosity  

• Examples of stable conditions read from the database are Cluster calibration data, 
Cabling and Alignment 
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Calo Reco summary
• Large amount of event data to be processed 

• Large amount of conditions data needed 

• No much math, practically only multiplications with calibration constants 

• Deriving the constants is much more challenging from the math point of view, but 
done only 1/week (or 1/year) instead of kHz  

• Plots below are from out “Performance Monitoring System”: Same job on every nightly on 
a otherwise quiet machine
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Migration to athenaMT (multi-theading)

• Sort-of-works as long as the conditions data 
doesn’t change (like MC case)  

• Migration of the code handling conditions data (in 
particular the high-voltage) to be done
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Possible CPU improvements
• There is certainly room for improvement if we aggressively re-organize data structures 

• Examples: 

• Skip LArRawChannels, make CaloCells straight from ByteStream 

• Done already in High-Level Trigger 

• Replace current Cell-Container (DataVector<CaloCell>) by flat arrays of E,t,Q (struct-of-
arrays) 

• Arrange calibration constants in the same way  

• Should allow SIMD in cell-calibration 

• Not done (yet), because: 

• Lots of work 

• Lose hooks for data-quality monitoring 

• Little benefit, since the CPU time is small compared to other things happening in the same job 

• Backward compatibility requirements: New versions of our software is supposed to be able read 
old bytestream and reconstruct it using old conditions data  
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The End


