
A Brief and Gentle Overview of ATLAS I/O
and Data Persistence

David	Malon			
malon@anl.gov	
	
US	ATLAS	/	BNL	CSI	Workshop		
25	July	2018,	Brookhaven		

Introduction

§  High-level	overview	of	the	major	components	that	support	ATLAS	I/O	and	data	
persistence	

§  Experts	will	noSce	nontrivial	omissions	and	(over)simplificaSons	
–  We	can	add	detail	if	we	discover	it	maXers	for	this	workshop’s	purposes			

§  Will	try	to	convey	the	basic	ideas,	but	dedicate	more	Sme	to	areas	that	may	be	
candidates	for	collaboraSve	development	

§  Have	proposed	a	few	areas	for	possible	joint	efforts	in	our	collecSve	planning	
document		
–  AdmiXedly	without	knowledge	of	BNL	CSI	interests	and	experSse	

§  Perhaps	others	will	see	addiSonal	possibiliSes	in	this	descripSon	of	ATLAS	I/O	and	
persistence		

	

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

2	

ATLAS and its event data

§  By	far	the	preponderance	of	ATLAS	processing	is	event	processing	
§  Our	framework	is	(principally)	an	event	processing	framework	
§  Most	data	read	and	most	data	wriXen	are	event	data	
§  ATLAS	currently	has	between	200	and	300	petabytes	of	event	data		

–  Including	replicated	datasets		

§  ATLAS	stores	the	bulk	of	its	event	data	using	ROOT	as	its	persistence	technology		
–  Though	raw	readout	data	from	the	detector	is	in	another	format		
–  Much	more	on	ROOT	later	

§  The	ROOT	team	esSmates	more	than	1	exabyte	of	Large	Hadron	Collider	(LHC)	
data	reside	in	ROOT	files		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

3	

Auxiliary data
§  While	most	ATLAS	processing	reads	events	and	writes	events,	auxiliary	non-event	

data	are	generally	also	needed	for	such	processing		
§  Examples:		Detector	geometry,	alignments,	detector	calibraSons	and	condiSons,	

detector	and	beam	status,	trigger	menus,	metadata,	…	
§  These	may	be	Sme-varying,	not	all	on	the	same	Sme	scale		

–  ATLAS	divides	its	data-taking	into	small	Sme	intervals	over	which	condiSons	may	be	
treated	as	approximately	constant		

§  This	is	one	of	the	factors	that	complicates	(adds	interest	to?)	ATLAS	processing	as	
just	another	SPMD	applicaSon		

§  At	ATLAS	(and	HPC)	scales	(but	funcSonally	at	any	scale)	this	maXers	
–  Different	nodes	processing	events	from	different	Sme	intervals	may	require	different	

condiSons	data	
–  And	even	a	single	node	may	find	that	the	next	event	to	be	processed	requires	different	

condiSons	data		
–  So	one	cannot	quite	iniSalize	all	nodes	with	exactly	the	same	auxiliary	data	and	be	done		

§  Geeng	the	metadata	and	bookkeeping	and	its	propagaSon	and	associaSons	right	
is	also	a	nontrivial	consideraSon	
–  Not	just	“did	we	process	all	of	the	events”	
–  ATLAS	is	reconsidering	how	to	handle	this	beXer	(we	can	talk	more	about	this	later	if	it	

seems	worthwhile	to	do	so)	
	 David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

4	

High-level I/O components

§  Event	Selector:		the	means	through	which	events	are	read	
–  Connects	a	job	to	an	event	source	

§  Outstream:		the	means	through	which	events	are	wriXen		
–  Connects	a	job	to	an	event	sink	

§  (Less	visible	to	users)	Converters	and	conversion	services	provide	support	for	
reading	and	wriSng	objects	of	specific	types		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

5	

Event Selector
§  Connects	the	event-processing	framework	to	an	event	source	

–  Source	is	generally	but	not	necessarily	a	file	or	list	of	files		

§  In	event-loop-based	processing,	its	primary	role	is	to	implement	next():		
–  makes	the	contents	of	(objects	in)	the	next	input	event	available	to	the	algorithms	that	

will	process	them		
–  “makes	available”	can	mean	triggering	actual	retrieval	of	input	event	data	objects	
–  Or	it	can	more	simply	mean	populaSng	the	transient	store	with	“pointers”	to	the	

relevant	data	in	support	of	something	closer	to	on-demand	retrieval		

§  Event	selectors	can	select	(filter),	though	oien	they	simply	iterate	through	the	
aXached	input		
–  Most	commonly	filtering,	if	any,	is	done	only	on	run	and	event	numbers,	or	by	choosing	

the	Mth	through	Nth	events	in	a	file	
–  But	in	principle	next()	may	mean	“next	event	that	saSsfies	a	filter	predicate”	

§  Event	Selector	has	other	duSes,	too	
–  Managing	what	happens	on	file	boundaries	(processing,	metadata,	…)			

§  And	their	are	many	ancillary	services	not	described	here			

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

6	

Outstreams

§  Outstreams	connect	a	job	to	an	event	sink	
–  Most	oien	a	file		

§  Configured	with	a	wide	range	of	informaSon	related	to	persistence,	either	for	the	
outstream’s	own	use	or	to	pass	to	the	underlying	persistence	technology	
–  File	names,	compression	choices,	persistent	data	layout	hints,	commit	intervals,	high-

water	marks,	…		

§  Configured	as	well	with	the	list	of	names	of	transient	data	objects	to	be	wriXen	
§  May	have	mulSple	outstreams	in	a	job		

–  Events	meeSng	different	criteria	may	be	sent	to	different	outstreams	
–  Possibly	with	output	content	that	may	differ	by	stream		

	

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

7	

Converters and conversion services

§  The	ATLAS	transient	event	data	model	is	defined	in	C++	
§  The	role	of	conversion	services	and	their	converters	is	to	provide	a	means	to	write	

C++	objects	to	storage	and	read	them	back	
§  General	model	is	that	converters	are	type-specific	

–  Though	there	are	ways	to	deal	with	commonaliSes	
–  And	one	may	want	to	do	this	for	objects	of	different	derived	types	that	share	one	or	

more	base	classes,	as	just	one	example		

§  Converters	are	how	one	chooses	a	persistent	representaSon,	and	conversely	how	
one	builds	a	transient	data	object	from	such	a	representaSon		
–  Clearly	there	is	more	than	one	way	to	serialize	a	given	object’s	state,	parScularly	for	

non-trivially-structured	objects,	and	there	are	storage	and	performance	reasons	why	
one	might	care		

–  And	even	for	serializaSon	of	state,	one	can	imagine	choosing	different	representaSons	
for	different	purposes	or	different	technologies		

§  Converters	are	the	locus	for	schema	evoluSon		
–  A	place	to	put	code	to	read	old	versions	of	persistent	data	and	create	the	latest	versions	

of	transient	event	data	objects,	and	more		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

8	

Conceptual model: converters and their roles

§  Can	imagine	an	outstream	simply	iteraSng	over	the	list	of	objects	to	be	wriXen	
and	calling	their	(type-dependent)	converters	to	do	the	wriSng		
–  PotenSally	in	two	steps:		one	to	write,	the	other	to	handle	inter-object	pointers,	though	

ATLAS	has	other	ways	to	handle	references	as	well		

§  Converter	finds	the	object	in	the	transient	store,	writes	it,	and	returns	a	
“reference”	to	the	persistent	data	
–  “Reference”	contains	sufficient	informaSon	to	locate	and	describe	the	data	in	persistent	

storage	for	later	retrieval	

§  What	one	does	with	such	references	Is	a	basis	for	an	event	store	navigaSonal	
model		

§  Similarly	on	input:		can	imagine	an	event	selector	ensuring	that	such	references	to	
input	data	are	“registered”	in	a	transient	store	so	that	retrieval	of	an	object	with	a	
given	name/key*	is	possible		
*	(or	even	a	different	name/key,	with	a	valid	reference	to	persistent	data	of	a	suitable	type)		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

9	

Event store navigation
§  Recall	that	objects	in	the	transient	store	also	have	a	name	(key)		
§  Aier	storing	all	objects,	ATLAS	“remembers”	where	it	put	them	by	recording	their	

names/keys	and	their	locaSons	(via	the	returned	references)	in	a	DataHeader	
object	
–  Which	also	maintains	a	provenance	record	that	points	to	upstream	processsing	stage	

§  A	reference	to	this	DataHeader	object	is	used	in	turn	in	event	selecSon	metadata	
systems	to	idenSfy	where	within	the	ATLAS	distributed	data	store	(hundreds	of	
petabytes)	to	find	this	event		

§  Current	navigaSonal	model	is	more	general	than	this,	with	more	capabiliSes	than	
ATLAS	uses	(or	needs	today)		
–  Example:		pueng	event	data	objects	needed	by	only	a	small	number	of	downstream	

users	into	a	different	file	than	most	of	the	data	
•  ReplicaSng	such	data	this	less	frequently,	and	reducing	transfer	of	unneeded	data	to	a	site	or	

job	

–  Example:		real-Sme	back	navigaSon	and	access	to	upstream	data		

§  Under	review:		we	may	simplify		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

10	

Persistent event data model

§  Design	of	current	conversion	services	foresaw	the	need	to	support	the	full	
expressive	power	of	C++	object	definiSon	
–  Arbitrarily	complex	and	heterogeneous	objects	could	be	part	of	the	event	data	model,	

and	they	were:		in	Run	1	

§  ATLAS	greatly	reduced	the	complexity	of	its	data	model	for	Run	2	(the	current	
run),	and	adopted	a	much	more	homogeneous	strategy	for	event	data	object	state	
implementaSon		

§  Concurrently,	ROOT’s	ability	to	support	C++	data	object	persistence	developed	and	
matured	
–  Lessening	the	need	for	ATLAS-specific	smart	converters	

§  In	pracSce,	current	converters	create	persistent	representaSons	highly	aligned	
with	the	xAOD	and	its	AuxStore-based	transient	data	model		

§  Efforts	toward	simplificaSon	and	more	direct	leveraging	of	ROOT	I/O	are	in	
progress	

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

11	

AthenaOutput
Stream SG

AthenaPool
CnvSvc AthenaPool

Converter
T/P

PoolSvc

PersistencySvc

StorageSvc

TKey TTree

ROOT

Collect
Objects

createRep
Objects

createRep createPersistent
(optional)

registerForWrite

Fill

registerForWrite

registerForWrite

Write

There are of
course many
more
components not
discussed today

Shared I/O components

§  The	Athena	framework	may	be	run	in	mulSprocessing	mode	(AthenaMP)	
§  Fork	N	idenScal	workers	aier	iniSalizaSon	or	later	

–  As	late	as	possible	to	maximize	memory	sharing	

§  Each	process	could	read	its	own	file	
–  If	there	are	enough	input	files	(and	there	are	tradeoffs	here)	

§  Each	process	could	read	from	the	same	file	
–  ContenSon	and	needless	work	(all	processes	decompressing	the	same	buffers,	etc.)	

§  Shared	reader:		one	process	handles	reading	and	distribuSon	of	input		
§  Each	process	could	write	its	own	file	

–  Result:		lots	of	memory	consumpSon,	lots	of	small	files	that	must	be	merged	later,	…	

§  Each	process	could	write	to	the	same	file	
–  Ouch.	Seriously?			

§  Shared	writer:		one	process	handles	wriSng		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

13	

Unshared and shared reading

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

14	

Unshared and shared writing

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

15	

Begin interlude: ROOT
Content	thanks	to	the	ROOT	team,	and	especially	Philippe	Canal		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

16	

The ROOT File

▶  In	ROOT,	objects	are	wriXen	in	files*	
▶  ROOT	provides	its	file	class:	the	TFile	
▶  TFiles	are	binary	and	have:	a	header,	records	and	can	be	compressed	(transparently	for	

the	user)	
▶  TFiles	have	a	logical	“file	system	like”	structure	

●  e.g.	directory	hierarchy	
▶  TFiles	are	self-descrip/ve:	

●  Can	be	read	without	the	code	of	the	objects	streamed	into	them	
●  E.g.	can	be	read	from	JavaScript	

*	this	is	an	understatement	

17	

Flavour of TFiles

18	

ROOT File Description

19	

A Well Documented File Format

20	

How Does it Work in a Nutshell?

▶  C++	does	not	support	na/ve	I/O	of	its	objects	
▶  Key	ingredient:	reflecSon	informaSon	-	Provided	by	ROOT	

●  What	are	the	data	members	of	the	class	of	which	this	object	is	instance?	I.e.	How	does	the	
object	look	in	memory?	

▶  The	steps,	from	memory	to	disk:	
1.  SerialisaSon:	from	an	object	in	memory	to	a	blob	of	bytes	
2.  Compression:	use	an	algorithm	to	reduce	size	of	the	blob	(e.g.	zip,	lzma,	lz4)	
3.  “Real”	wriSng	via	OS	primiSves		

21	

Serialisation: not a trivial task

For	example:	

▶  Must	be	plauorm	independent:	e.g.	32bits,	64bits	
●  Remove	padding	if	present,	liXle	endian/big	endian	

▶  Must	follow	pointers	correctly	
●  And	avoid	loops	;)	

▶  Must	treat	stl	constructs	
▶  Must	take	into	account	customisaSons	by	the	user	

●  E.g.	skip	“transient	data	members”	

	

22	

Persistency

23	

C++
Classes/structs	
Interfaces

(e.g.	header	files)	

XML/C++
SelecSon	metadata
(transient	members,	
versioning,	morphing)	

DicSonary	
generaSon	

C++
DicSonary	(info	for	
registraSon	of	
classes	in	ROOT	

Core)	

C++
Classes/structs	
implementaSons

Compiler	

Shared
Library	

Injection of Reflection Information

24	

Needed,	Discovered,	Loaded	

Now ROOT “knows” how to serialise the instances implemented in the library (series of
data members, type, transiency) and to write them on disk in row or column format.

Columns and Rows

▶  High	Energy	Physics:	many	staSsScally	independent	collision	events	
▶  Create	an	event	class,	serialise	and	write	out	N	instances	on	a	file?	No.	Very	inefficient!	
▶  Organise	the	dataset	in	columns	

25	

Columnar Representation

pt_x pt_y pt_z theta

entries
or events
or rows

→

columns
or “branches”←

26

can contain any
kind

of c++ object

27

Relations Among Columns

Optimal Runtime and Storage Usage

RunSme:	

▶  Can	decide	what	columns	to	read	
▶  Prefetching,	read-ahead	opSmisaSons	possible	

Storage	Usage:	

▶  Run-length	Encoding	(RLE).	Compression	of	individual	columns	values	is	very	efficient	
●  Physics	values:	potenSally	all	“similar”,	e.g.	within	a	few	orders	of	magnitude	-	posiSon,	

momentum,	charge,	index	

28	

The TTree

A	columnar	dataset	in	ROOT	is	represented	by	TTree:	

▶  Also	called	tree,	columns	also	called	branches	
▶  An	object	type	per	column,	any	type	of	object	
▶  One	row	per	entry	(or,	in	collider	physics,	event)	
	

If	just	a	single	number	per	column	is	required,	the	simpler	TNtuple	can	be	used.	

29	

Comparison With Other I/O Systems

30	J. Blomer, A quantitative review of data formats for HEP analyses ACAT 2017

 More on technology comparisons

▶  See	the	same	paper	for	performance	comparisons	of	ROOT	to	other	systems		
▶  J.	Blomer,	A	quan/ta/ve	review	of	data	formats	for	HEP	analyses	ACAT	2017	

	

31	

End interlude: ROOT

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

32	

Some starting points for possible collaborations?

§  GeKng	data	onto	and	off	of	a	large	number	of	high-performance	computaSonal	
nodes	efficiently	will	be	essenSal	to	effecSve	exploitaSon	of	HPC	architectures.			

§  There	are	a	number	of	facets	to	such	work	that	could	be	undertaken	separately	or	
together.	.		

§  There	are	a	variety	of	ways	to	support	such	models	
–  I/O	concentrators	on	output,	for	example,	to	which	individual	worker	nodes	would	send	

their	data	to	be	merged	and	later	wriXen	to	storage	by	a	much	smaller	number	of	
workers.		

–  Input	is	comparable	in	principle,	e.g.,	with	a	relaSvely	small	number	of	workers	(“shared	
readers”)	reading	from	persistent	storage	and	distribuSng	input	data	to	many	more	
workers	

§  Far	from	groundbreaking	conceptually,	but	
–  There	are	many	design	choices	to	be	made,	and	nontrivial	development	to	be	done		
–  Possibility	of	collaboraSon	between	components	that	operate	inside	and	outside	an	

event	processing	framework	(or	not)		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

33	

Efficient I/O for HPCs

§  A	number	of	possible	implementaSon	strategies	to	be	invesSgated		
–  e.g.,	integraSng	message	passing	with	serializaSon	strategies	and	extensions	of	current	

shared	readers	and	writers	
–  With	merging	provided	by	ROOT	or	by	our	own	code	

§  Shared	I/O	components	already	in	producSon	(e.g.,	in	AthenaMP	(ATLAS	
framework	in	mulSprocessing	mode)	and	the	I/O	components	already	supporSng	
mulSthreaded	processing	(AthenaMT)	provide	a	solid	foundaSon	for	such	work	

§  A	look	at	integraSng	current	ATLAS	shared	writer	code	with	MPI	underway	at	LBNL	
–  Buffers	filled	by	workers	are	sent	to	writer	via	message	passing	rather	than	shared	

memory	
–  But	this	is	just	one	possible	strategy		

§  Related	work	(TMPIFile	with	synchronizaSon	across	MPI	ranks)	by	a	summer	
student	at	Argonne	ongoing	 		

§  Efficient	access	on	HPCs	to	Sme-varying	condiSons	and	other	non-event	data	
needed	for	event	processing	is	another	area	where	work	is	needed		
–  May	differ	from	node	to	node	and	vary	over	the	course	of	a	job		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

34	

Persistent data organization

§  Can	we	opSmize	persistent	data	organizaSon	for	HPC	use	cases?		Should	we?			
§  Current	ATLAS	data	organizaSon	is	designed	principally	for	serial	processing,	with	

columnar	data	access	
§  For	other	processing	models	there	are	more	efficient	ways	to	organize	data	on	

storage,	both	for	feeding	discrete	chunks	to	many	independent	processes	and	for	
receiving	data	from	many	independent	processes	with	greatly	reduced	contenSon	
on	the	storage	side	

§  Other	scenarios:		may	want	to	get	data	off	of	processors	as	fast	as	possible	and	
worry	about	storage	footprint	opSmizaSon	only	later	

§  The	promise	of	smart	server-side	data	access	and	filtering	(with	the	event	
streaming	service	as	just	one	example)	and	the	data	reorganizaSon	capabiliSes	
present	in	“data	lake”	models	will	allow	ATLAS	to	expand	its	range	of	potenSal	
persistent	data	organizaSons	and	representaSons,	and	to	tune	them	to	a	range	of	
workflows	

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

35	

Event-level, object-level, attribute-level
serialization

§  ATLAS	already	employs	a	serializaSon	infrastructure		
–  for	example,		to	write	high-level	trigger	(HLT)	results		
–  and	for	communicaSon	within	a	shared	writer	implementaSon			

§  A	unified	approach	to	serializaSon	that	supports,	not	only	event	streaming,	but	
data	object	streaming	to	coprocessors,	to	GPUS,	and	to	other	nodes,	would	be	a	
boon.		

§  ATLAS	takes	advantage	of	ROOT-based	streaming	(which,	importantly,	supports	
schema	descripSon	for	streamed	data).			

§  An	integrated	but		lighter-weight	approach	for	streaming	data	more	directly	
(structs	of	floats	conSguous	in	memory,	for	example,	as	a	block	of	bytes)	would	
allow	us	to	exploit	co-processing	more	efficiently	
–  Note	that	“ROOT-based”	and	“lighter-weight”	may	eventually	prove	not	to	be	mutually	

exclusive	(cf.	the	zero-copy	work	of	the	DIANA	project)	

§  Could	imagine	integraSng	an	approach	to	streaming	transient	data	to	coprocessors	
with	a	pipeline	from	persistent	storage,	conceptually	speaking	
–  In	any	case,	probably	do	not	want	two	different	approaches	to	serializaSon	that	are	

unaware	of	each	other	and	reuse	nothing		

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

36	

An I/O component could make sense in many
possible collaborative efforts

§  One	aXracSve	feature	of	any	I/O	and	I/O	opSmizaSon	work	is	that	these	areas	of	
development	or	any	subset	of	them	could	be	one	useful	and	important	component	
of	a	program	of	work	no	maXer	what	“algorithmic	hot	spot”	we	eventually	select	

David	Malon,	25	July	2018	

US	ATLAS	/	BNL	CSI	Workshop		

37	

