Application of Machine Learning Techniques in Collider Physics Reconstruction & Analysis

Peter Loch

Department of Physics University of Arizona Tucson, Arizona, USA

CSI Workshop BNL July 26, 2018

Preliminaries

Topics in this talk

- Highly selective & biased choice of topics where machine learning (ML) can be useful in reconstruction of detector signals and physics objects
- Calorimeter centric complex signals especially in the presence of pile-up
- Jet focus composite physics object representing momentum flow generated by partons emitted in a proton–proton collision at LHC

Not at all comprehensive!

Proton-Proton Collisions at the LHC

Schematic model of a proton-proton **Incoming (scattering) partons (here gluons)** collision partonic final state elementary particle q proton 222000 proton 0000000 000000 physics process of interest

Peter Loch

UAPhysics THE UNIVERSITY OF ARIZONA College of Science

detectable final state – stable particles with $c\tau > 10 \text{ mm}$

Final State (Jet) Reconstruction

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Jet Reconstruction Challenges longitudinal energy leakage detector signal inefficiencies (dead channels, HV...) pile-up noise from (off- and in-time) bunch crossings electronic noise calo signal definition (clustering, noise suppression...) dead material losses (front, cracks, transitions...) detector response characteristics (e/h ≠ 1) jet reconstruction algorithm efficiency lost soft tracks due to magnetic field

added tracks from underlying event added tracks from in-time (same trigger) pile-up event jet reconstruction algorithm efficiency

physics reaction of interest (interaction or parton level)

Challenges for Jet Reconstruction @ LHC

Pile-up

Affects jet kinematics and shapes

- Introduces additional energy/transverse momentum in jets
- Deteriorates reconstruction of jet mass & internal particle flow features

Number of pile-up collisions μ

 $\mu = (\mathcal{L}_{inst} \times \sigma_{inel}^{pp}) / (N_b \times f_{LHC})$ $\mathcal{L}_{inst} - instantaneous luminosity$ $\sigma_{inel}^{pp} - inelastic pp cross section$ $N_b - number of colliding$ bunches in LHC $f_{LHC} - LHC revolution$ frequency

without pile-up $p_{\rm T} \simeq 81 {
m ~GeV}$ 20 $p_{\rm T} \simeq 58 {
m GeV}$ 15 p_{T} [GeV] 5 0 350 300 250 150 100 50 $qq \rightarrow qqWW \rightarrow qqH \rightarrow qq\nu\nu\nu\nu$

UAPhysics THE UNIVERSITY OF ARIZONA College of Science

Peter Loch

Challenges for Jet Reconstruction @ LHC

Pile-up

Affects jet kinematics and shapes

- Introduces additional energy/transverse momentum in jets
- Deteriorates reconstruction of jet mass & internal particle flow features

Number of pile-up collisions μ

 $\mu = (\mathcal{L}_{inst} \times \sigma_{inel}^{pp}) / (N_b \times f_{LHC})$ $\mathcal{L}_{inst} - instantaneous luminosity$ $\sigma_{inel}^{pp} - inelastic pp cross section$ $N_b - number of colliding$ bunches in LHC $f_{LHC} - LHC revolution$ frequency with pile-up @ $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

 $qq \rightarrow qqWW \rightarrow qqH \rightarrow qq\nu\nu\nu\nu$

Basic Detector Design

July 26, 2018

Electromagnetic Showers

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Hadronic Showers

shower depth (λ)

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Hadronic Showers

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Hadronic Showers

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Calorimeter Jets

S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Toennesmann, Prog.Part.Nucl.Phys.60:484-551,2008 Slide 21 July 26, 2018

Topo-Cluster Formation

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA College of Science

Follow signal significance patterns

Extract calorimeter cells with significant signals or topologically connected to significant signals (high signal-over-noise)

Applies splitting algorithm to resolve spatial energy flow

Slide 22

ML for Topo-Cluster Formation

Slide 23

Topo-Cluster Calibration & Characterization

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA College of Science

Slide 24

Physics & detector

- Sensitive to differences in electromagnetic and hadronic cascades different response (\equiv signal from electrons/photons larger than signal from hadrons at the same deposited energy)
- Reflecting local response characteristics in calorimeter regions and boundaries

Finding observables

- Checked if simulation and experimental data agree chose best described parameters also in pile-up signal environment
- Ran multi-variate tests (Fischer discriminant) to verify choices seem to have found the best ones right away

Topo-Cluster Calibration With ML

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Why Looking Inside Jets at LHC?

Kinematic reach at LHC allows production of (highly) boosted particles

All decay products of hadronically decaying Standard Model particles can be collected into single jet

 $W \rightarrow qq$, Higgs bosons $H \rightarrow bb$, top quarks $t \rightarrow Wb \rightarrow qqb$

Searches for new heavy particles with boosted (SM) decay products

Single jet mass indicative observable for new particle production

Experimental challenges – detector granularity & pile-up

Limited granularity introduces limits in resolving sub-structure in a jet

E.g., signals from near-by particles can easily overlap in calorimeters Presence of pile-up can disturb single jet mass reconstruction from internal flow measurements

Needs to extract relevant internal jet energy flow structures for mass reconstruction etc. from diffuse pile-up contributions

Jet substructure analysis

Collection of techniques aiming at enhancing two- or three-particle ("prongs") decay patterns in single jets

Typically leads to suppression of QCD-like backgrounds from quark- and gluon jets with their typical parton shower and fragmentation driven internal flow structure

Separation of Flow Patterns

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Separation of Flow Patterns

Separation of Flow Patterns

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Jet Substructure in Physics Analysis

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Slide 32

Jet Substructure in Physics Analysis

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Jet Substructure in Physics Analysis

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Slide 34

ML in Jet Substructure Analysis

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA® College of Science

Already widely explored – mostly by theorists

Can clearly help to characterize jets beyond simple cuts – better exploration of residual uncorrelated features in relevant observables leads to improved measurements of structure

BOOST	#talks	#ML talks
2016	48	3 (6.3%)
2017	46	3 (6.5%)
2018	46	7 (15.2%)

Slide 35

Example: JUNIPR

ML analysis of jet branching by investing QCD

https://indico.cern.ch/event/649482/contributions/3009032/attachments/1689533/2718078/frye-boost-2018.pdf

Slide 36

Experimental Issues (?)

ML Applied in Physics Measurements

Peter Loch UAPhysics THE UNIVERSITY OF ARIZONA College of Science

Systematic uncertainties

- Pattern recognition tagging efficiencies
 - Characterization of individual jets, full event, ...
 - Bottoms-up approach starts with uncertainties for input observables possibly non-trivial (unknown?) propagation through ML kernel?
 - Non-trivial due to correlations through common nuisances not always possible to determine
 - Often can only test assumptions no (0%) or full (100%) correlations Impractical for large number of inputs – just heard 650 (!) at BOOST2018 Hidden biases – how to detect/avoid?

Signal extraction & measurements

- Pile-up often overlapping signal features in simple phase spaces suppression using ML? Jet-by-jet? Full event?
- Precision measurement of e.g. jet features how to test/avoid observation biases, control of systematics, ...

No fast track here

But clearly promising first impressions

Most obvious application for pattern recognition/image-based analysis

ML in Signal Reconstruction

Calorimeter signal extraction & calibration

Topological cluster formation

Subject to large fluctuations in number of clusters, cluster shapes, and cluster response in ATLAS calorimeter for hadrons of the same energy – mostly due to fluctuations in shower development (process) and (weak) shape correlations

More obvious for electromagnetic response – fairly regular and well correlated shapes with small process fluctuations

Cluster calibration

Can help to reduce bin effects in lookup tables – presently addressed by interpolations (limited to 2-dim)

Systematic uncertainties can probably be determined similar to present strategies comparing response expectations with calibrated signals

Similar issues with calorimeter jets ...

Computing Resources

ML may have to run on large test samples

- Scanning large data samples for signal (and background) features
 - Extract events with a given likelihood to contain e.g. boosted decays, certain jet pattern, etc.
 - May include signal ambiguity resolution same detector signals contributing to different physics objects in the same event
- Presently using derived data for event characterization
 - Minimal information content to include signal and background in a given phase space
 - Often more than one "view" of the same event in the same data set derived data production may apply ML for object and event classification and/or filtering