
Case Study :
Scientific Code Acceleration

Kwangmin Yu / Computational Science Lab

CASE I
Fast Trigger

2017 BNL GPU Hackathon Application

2

Fast Trigger

✓ Part of HyperKamiokande experiment in Japan.

✓ Data manipulation code from 40k photosensor collecting light generated by

neutrinos.

✓ Realtime data processing is required.

✓ 99.99% of data is noise. Only 0.01% is collected.

✓ Already gpuized and about 10000 times (four order of magnitude) speed-

up over CPU is achieved.

✓ Needs more speed-up because 400 GPUs are needed for realtime processing.

✓ NO math library is used (No math & simple data manipulation).

3

Fast Trigger
✓ The sorting is the most significant speedup factor (3x).

✓ Final speed-up is 5.3x.
Strategy Running

Time (ms)

Original code 357

Sorting (Look-up

table)

100

Sorting + L1

cache (increased)

160

Sorting + Reduced

Look-up table

80

Sorting + Reduced

Look-up table + L1

100

Sorting + Reduce

more

77

Sorting + Reduce

more + __ldg()

68

O Migrating the look-up table to the shared memory (L1 cache)

O Partial loading of the look-up table (Memory deficiency)

O Using min max lookup table to shorten memory needs

X Pair the inputs to coalesce memory

X L1 cache increase

X Persistent shared memory

O Local arrays as temporary stores to reduce atomic adds

O Sorting data by the look-up table

O Using __ldg() instrinsic

SORT

GPU Global Memory Coalescing

4

CASE II
Quantum ESPRESSO

Add-on Module Ver.

5

Quantum ESPRESSO

is an integrated suite of Open-Source computer

codes for electronic-structure calculations and

materials modeling at the nanoscale.

Based on Density Functional Theory, Plane

Waves, and Pseudopotentials.

K point Gamma Non Collinear (NC)

PW (VLOC_PSI) O O ★

PH (H_PSIQ) ★ X X

• Partially GPUized

O: previous acceleration, ★: our contribution, X: Not accelerated yet

6

7

⚫ Loop over Bands

I. h_psiq_kernel_init_psic_k

II. cufftExecZ2Z(PSIC, Inverse)

III. h_psiq_kernel_vec_prod_k

IV. cufftExecZ2Z(PSIC, Forward)

V. h_psiq_kernel_save_hpsi_k

FFT Plan Initialization was

1. Memory initialization

2. DFT(Discrete Fourier Transformation) Matrix (Vandermonde Matrix) Initialization

✓ Move the initialization out

of the loop

✓ The initialization is called

only when the plan size

changes.

SOLUTION:

Quantum ESPRESSO

8

Quantum ESPRESSO

4.1

3.2

9.3 38.3

39.2

2.8

80.3

ortho

incdrhoscf

other

first fft

second fft

last

h_psiq

✓ Physical system: an Ar atom in a big box

✓ Description: RPA calculation for 200 eigenmodes at 12 frequencies

✓ Total CPU time: 8 h 51 min with 48 processors

9

H_PSIQ ((H - eS) * PSI) VLOC_PSI (H * PSI)

⚫ Call CALBEC

⚫ h_psiq_kernel_init_hpsic()

⚫ Loop over Bands

I. h_psiq_kernel_init_psic_k

II. cufftExecZ2Z(PSIC, Inverse)

III. h_psiq_kernel_vec_prod_k

IV. cufftExecZ2Z(PSIC, Forward)

V. h_psiq_kernel_save_hpsi_k

⚫ Loop over Bands

I. h_psiq_kernel_init_psic_k

II. cufftExecZ2Z(PSIC, Inverse)

III. h_psiq_kernel_vec_prod_k

IV. cufftExecZ2Z(PSIC, Forward)

V. h_psiq_kernel_save_hpsi_k

⚫ Call ADD_VUSPSI

⚫ Call S_PSI

Quantum ESPRESSO
Pseudocode

10

Quantum ESPRESSO
Diagram

11

Restructuring the CUDA kernel functions to gather scattered GPU

memory access.

qecheck_cufft_call(cufftExecZ2Z(p_global, (cufftDoubleComplex *) psic_D, … , CUFFT_FORWARD));

tscale = 1.0 / (double) (size_psic);

cublasZdscal(qecudaHandles[0] , size_psic, &tscale, (cufftDoubleComplex *) psic_D, 1);

kernel_save_hpsi<<< grid2_hpsi, threads2_hpsi, 0, qecudaStreams[0] >>>(… , hpsi_D, (double *)

psic_D, …);

Quantum ESPRESSO
Optimization

12

Quantum ESPRESSO
CUDA Multi Process Service

✓ Due to the high CPU core count per node, many MPI processes share a
limited number GPU resource even though multiple GPU devices are
equipped on the node.

✓ CUDA MPS is an efficient way to share GPUs on node.

CUDA

MPI

Rank0

CUDA

MPI

Rank1

CUDA

MPI

Rank2

CUDA

MPI

Rank3

GPU

CUDA

MPI

Rank0

CUDA

MPI

Rank1

CUDA

MPI

Rank2

CUDA

MPI

Rank3

GPU

MPS ServerSerial

Access
Parallel

Access

13

This example illustrates how to use pw.x (PW) and ph.x (PHonon) to

calculate phonon frequencies at Gamma and X for Si and C in the diamond

structure and for fcc-Ni.

(sec) H_PISQ() PHonon

MPI+GPU 27.31 194.15

MPI only 374.79 667.81

Speed-up 13.72 3.44

GPU: K40 (Four devices)

of MPI processes : 4

of k points : 4

Output file : si.phXsingle.out

FFT size : 96 X 96 X 96

Quantum ESPRESSO
Result

14

The example is divided on two parts, the first one is an example of a molecule

(CO2) and the second one is a solid (ZnO-Wurtzite) which are computed in a

similar way, but with some small differences. With metals the occupation is

determined by smearing and as it is a solid there should be more k-points. For

the phonon calculation, the "epsil" should be set to .false. for ZnO, otherwise

the code will not be able to compute the dielectric constant and will crash. But

it can be set to .true. in the case of CO2.

(sec) H_PISQ() PHonon

MPI+GPU 112.60 262.19

MPI only 477.12 633.71

Speed-up 4.24 2.42

GPU: K40 (Four devices)

of MPI processes : 8

of k points : 8

Output file : zno.ph.out

FFT size : 75 X 48 X 48

Quantum ESPRESSO
Result

CASE III
Continuous Time – Quantum Monte Carlo

(CT-QMC)

15

CT-QMC
Impurity Model

Dynamical Mean Field Theory (DMFT) is a method

to determine the electronic structure of strongly

correlated materials. In such materials, the

approximation of independent electrons, which is

used in density functional theory (DFT) and

usual band structure calculations, breaks down.

Dynamical mean-field theory, a non-perturbative

treatment of local interactions between electrons,

bridges the gap between the nearly free

electron gas limit and the atomic limit of condensed-

matter physics.

Impurity Model

➢ Computing 𝐎 = σ𝑐𝑂 𝑐 𝜔 𝑐 / 𝑍 where 𝑂 𝑐 = 𝑐 መ𝐴𝑒−𝛽𝐻 𝑐 /𝜔 𝑐 ,

Z = σ𝑐𝜔 𝑐 , and 𝝎 𝒄 = 𝒄 𝒆−𝜷
𝑯 𝒄

➢ 𝐎 = σ𝒄𝑶 𝒄 (
𝝎 𝒄

𝒁
) = σ𝒄𝑶 𝒄 𝝆(𝒄) where 𝜌 𝑐 =

𝝎 𝒄

𝑍

➢ O is the expectation of O(X) with the p.d.f. 𝜌 𝑥 ⟹ O = E[O(X)]

➢ O = E[O(X)] = lim
𝑛→∞

1

𝑁
σ𝑐𝑂 𝑐 ≃

𝟏

𝑵
σ𝒄𝑶 𝒄

=

➢ Random sampling from 𝝆 is the main goal of the code.

➢ Metropolis-Hasting alg. is used for the sampling.

16

➢ The Metropolis-Hasting Algorithm for sampling 𝝎 𝒄

➢ Markov Chain: 𝑐1 → ⋯ → 𝑐𝑛 → 𝑐𝑛+1 → ⋯

➢ One iteration at step n

I. Proposal trial configuration 𝑐′

II. Compute 𝑝 =
𝝎 𝒄′

𝝎 𝒄𝒏

III. 𝑐𝑛+1 = ቊ
𝑐′ ∶ 𝐴𝑐𝑐𝑒𝑝𝑡 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
𝑐𝑛 : 𝑅𝑒𝑗𝑒𝑐𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

IV. Set n = n+1

17

CT-QMC
Metropolis-Hasting Algorithm

=

GPU 0

GPU 1

GPU 2

GPU 4

CT-QMC
CPU-GPU Concurrent Run

CPU core controlling GPU

GPU Stream 0

GPU Stream 1

GPU Stream 2

Speedup Test

Computing Env. Speedup

IC with K80 3.5x

IC with P100 5x

Titan (ORNL) 5x

SummitDev (ORNL) 12.5x

18

OTHERS

19

MAD-X

➢ Methodical Accelerator Design (version 10)

➢ Designing accelerators and testing beam behavior

➢ Widely used for lattice design in accelerators throughout the world.

➢ Currently studying space charge effects for future RHIC Upgrades.

➢ OpenMP parallelization is applied.

➢ Maximum speed-up is 5x.

20

CR-SIM
➢ Acronym of Cloud Resolving Model Radar SIMulator.

➢ Generates a virtual (synthetic) view of what a radar would see if

incorporated into an atmospheric model that resolves clouds.

➢ Model validation tool (creates virtual observation by radars.)

➢ Has world wide user community and the community is growing.

➢ 168x speedup by restructuring I/O parts and applying OpenMP.

21

SUMMARY

22

SUMMARY
GPU Memory

➢ Minimize data transfer between GPU & CPU

➢ Minimize GPU global memory access

➢ Maximize GPU shared memory usage

➢ GPU Global Memory Coalescing

➢ Every 128 byte (32 * 4 byte) successive memory can be

accessed by a warp (32 threads) in a single transaction.

23

SUMMARY
Branching

For loop

⁞

If then

⁞

Else then

⁞

End if

⁞

End for

If then

⁞

For loop

⁞

End for

Else then

⁞

For loop

⁞

End for

End if

__global__ void kerPropInit(…) {

⁞

if (threadIdx.x == SOME_VALUE) {

⁞

}

⁞

}

Ex. Boundary

24

SUMMARY
Restructuring

✓ No general rule. Totally depends on problem.

✓ Restructuring data structure and algorithms for massively parallel

computing environment.

✓ This requires deep understanding of the domain science (at least

the main algorithms and workflow of the code).

Examples:

From tiny many matrices To Huge one matrix

Reordering temporal process

Removing branches

25

✓ New algorithm for GPU or Heterogeneous System.

