
ATLAS core software and EDM

Scott Snyder

Brookhaven National Laboratory, Upton, NY, USA

July 25, 2018

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 1 / 88

The facts of life

Atlas offline software is about 5M LOC (excluding external libraries).
I Roughly 80% C++, 20% Python (mostly job configuration).

Written by hundreds of contributors over several decades.
I “. . . any process which is not forbidden by a conservation law actually

does take place with appreciable probability.” — Gell-Mann

Under continual evolution of both core and algorithmic code.
I There are often several methods/interfaces for doing something, that

were introduced at different times.
I Will generally show here the currently recommended patterns.
I But some or even most of the code in the repository may use older

ways.

Major evolution in progress: multithreading.

Currently building with gcc 6; nearly ready to switch to gcc 7.
I Can compile with gcc8/clang with a few patches.
I Compiling with icc may be a significant effort. icc appears to generate

incorrect code for some core components.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 2 / 88

Athena/Gaudi component model

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 3 / 88

Athena and Gaudi
Athena uses Gaudi, shared with LHCb and other experiments.

Dynamically loadable
components.

I Including algorithms,
tools, services.

Ideally used via abstract
interfaces.

Algorithms and tools can
own other tools.

Services are singletons.

Identified with a type
(C++ type) and name
(instance).

Each component has a
list of properties.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 4 / 88

5 C Leggett 2015-02-10

Gaudi/Athena Components and States

 Persistent
Storage

User
Configuration

Files

AlgorithmsAlgorithmsAlgorithm

Configuration
Manager

initialize()

execute()

finalize()

Transient
Data Store

External
Libraries

Data
Converters

Use

Configure

ServicesServicesServices

User
Configuration

Files

User
Configuration

Files

Python
interface
interactive /

scriptable

A
p

p
lic

a
ti

o
n

M
a

n
a

g
e

r
(s

ta
te

 m
ac

hi
ne

)
co

nf
ig

ur
e

| i
ni

tia
liz

e
| e

xe
cu

te
 (

n)
 |

fin
al

iz
e

ServicesServicesAlgTools

Data
Objects

Data
Objects

Useini t ia li ze

finalize

configure

Offline

Configured

Initialized

Running

terminate

finalize

stop

configure

initialize

start

execute

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 5 / 88

7 C Leggett 2015-02-10

Interfaces, Plug-ins, Factories and all that

Gaudi component model inspired by Microsoft COM.
• Components implement an interface, and use other

components through an interface
• Components are packaged in Shared Object Libraries

(DSO/DLL) and declared in a “components” manifest file.
• Gaudi PluginSvc uses manifest to locate which DSO

contains a given component dictionary, dlopen-it, and
create an instance using a factory method

components

AtRanLux
GenSvc

AtRanLuxGenSvc?

RngComps

PluginSvc

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 6 / 88

Gaudi components

Four types: Service, algorithm, tool, converter.

Identified by type (C++ class name) and name (identifies instance).
Ex: CaloClusterMaker/CaloTopoCluster.

Manifest (“components”) files generated automatically during build
map class names to component DSOs.

I Generally, no other library should link against a component library.

Resolving component names and loading libraries managed by Gaudi
PluginService.

Each component has a list of named properties set during job
configuration.

I Correspond to component data members.
I Special handle property types for references between components and

for access to event data.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 7 / 88

Services
A global service. Examples:

I StoreGateSvc — transient data store.
I MessageSvc — logging.
I AtRndmGenSvc — random number generator management.

Single instance for the entire job.
I So for MT jobs, services should be explicitly thread-safe.

Ideally (though not necessarily) accessed via an abstract interface.

Example interface definition:

class IMyInterface

: virtual public IInterface // Gaudi interface base class

{

public:

// Gaudi boilerplate

DeclareInterfaceID (IMyInterface, 1, 0);

virtual int getFoo() const = 0;

};

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 8 / 88

Service example

class MyService

// Service with additional interfaces; can add more.

: public extends<AthService, IMyInterface>

{

public:

// Constructor. (Could inherit instead for this example.)

MyService::MyService (const std:string& name,

ISvcLocator* svcloc)

: base_class (name, svcloc) {}

// Also finalize(), start(), stop()

virtual StatusCode initialize() override {

ATH_MSG_INFO("Initializing; foo is " << m_foo.value());

return StatusCode::SUCCESS; } // or FAILURE

virtual int getFoo() const override { return m_foo; }

private:

Gaudi::Property<int> m_foo { this, "Foo", "Example" };

};
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 9 / 88

Tools

Helper component owned by an algorithm, service, or other tool.
I These are called “private” tools. It has also been possible to have

global “public” tools. There is nothing that particularly differentiates
public tools from services, so this concept is deprecated. There are still
many in the source, though.

Again, ideally accessed via an abstract interface.

Coding is nearly the same as for services.
I Except deriving from AthAlgTool instead of AthService.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 10 / 88

Algorithms

Called once per event to process event data.

Event data taken from the transient data store.

Derive from AthAlgorithm (or AthReentrantAlgorithm).

Provide the interface:

virtual StatusCode execute();

(slightly different for reentrant algorithms; see later).

Can be grouped into sequences, which are themselves algorithms.

Algorithms can set a flag to stop execution of a sequence early
(filtering).

In serial jobs, algorithms are executed in a fixed order specified in job
configuration.

Common pattern: algorithm fetches input/creates empty output, then
executes a configurable list of tools.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 11 / 88

Component references
References between components done via properties of type
ServiceHandle<> and ToolHandle<>.

class MyAlgorithm : class AthAlgorithm {

ServiceHandle<IMyInterface> m_svc

{ this, "TheSvc", "MySvc", Comment" };

ToolHandle<IMyTool> m_tool

{ this, "TheTool", "MyTool/tool1", "Comment" };

public:

using AthAlgorithm::AthAlgorithm;

virtual StatusCode initialize() override {

ATH_CHECK(m_svc.retrieve());

ATH_CHECK(m_Tool.retrieve()); }

virtual StatusCode execute() override {

int foo = m_svc->getFoo();

ATH_CHECK(m_tool->doSomething (foo));

return StatusCode::SUCCESS; }

};
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 12 / 88

Job configuration

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 13 / 88

Component properties

Each component has a list of named
properties.

I Of various C++ types.
I Corresponding to data members in the

component C++ class.

Also can have properties representing
references to other components: ToolHandle
and ServiceHandle.

When a component initializes, it queries
JobOptionsSvc for its properties.

JobOptionsSvc holds property settings for
each component, as strings.

JobOptionsSvc populated by job
configuration.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 14 / 88

Python component configuration interface: Configurable

Each component has a Python “Configurable” class to collect information
during job configuration:

from MyComponents.MyComponentsConf import MyComponent

Create an instance of MyComponent named mycomp and

set some properties.

mycomp = MyComponent (’mycomp’,

sprop = "some string",

viprop = [3, 2, 1])

Can change/set properties later.

mycomp.iprop = 10

mycomp.sprop = "some other string"

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 15 / 88

Configurables

Configurables are pure Python
classes.

I Can be pickled, etc.

Generated automatically during
build from the shared libraries
containing the components.

Singleton behavior:
MyComponent("foo") always
gives the same object.

Hold property settings, and can
later transport them to
JobOptionsSvc.

athena.py (python is Athena binary):

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 16 / 88

Component references
Configurables can reference other Configurables to build up a complete job
configuration.

from MyComponents.MyComponentsConf import *

Create a Service; register with ServiceMgr.

myserv = MyService (’myserv’, parm=1)

svcMgr += myserv

An algorithm using this service plus a tool.

myalg = MyAlgorithm (’myalg’,

service = myserv,

tool = MyTool (’mytool’,

arg=’something’))

Schedule this algorithm to run in sequence.

topSequence += myalg

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 17 / 88

Other configuration helpers

include: Textual inclusion of another Python fragment.

include(’Calorimeter/CaloRec.py’)

Job configuration flags:

from CaloRec.CaloRecFlags import jobproperties as jp

jp.CaloRecFlags.doTileCorrection = True

if jp.CaloRecFlags.doTileMuID():

...

Some properties set automatically from input file metadata:

tool = MyTool (’mytool’,

energy = jobproperties.Beam.energy)

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 18 / 88

Done? Maybe not.

Doesn’t scale — becomes unmanageable with thousands of
components.

Everything in the global namespace — easy to have collisions.

Different pieces of the configuration can try to configure the same
component in different ways.

Many components have prerequisites that must be configured first.
I Difficult even for experts to get it right.

Several attempts made in the past to add more structure.
I Put configuration into imported Python modules.
I Various registries for looking up configuration information.

Helped somewhat — but now different parts of the job are configured
in different ways.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 19 / 88

Run 3 job configuration

Working on overhauling how job configuration works for run 3.

Subject of a separate poster; only brief summary here.

No global namespace; make dependencies explicit.

Everything in imported modules; no include.

Configuration of component also configures all its dependencies.
I Configurations are self-contained.

Modules can be run stand-alone and concatenated:
I Need to remove duplicates if the some component is configured

multiple times.

Will probably be used for major parts of the Run 3 configuration.
I May not have sufficient effort available to convert everything before

Run 3, given other migrations also in progress.

Trying to keep new code compatible with both Python 2 and 3.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 20 / 88

Run 3 job configuration: simple example

def MyAlgoCfg(inputFlags):

result=ComponentAccumulator()

isMC=inputFlags.get("AthenaConfiguration.GlobalFlags.isMC")

Set up geometry.

from Geometry.GeomConfig import GeomCfg

result.addConfig (GeomCfg, inputFlags)

form MyAlgoPackage.MyAlgoPackageConf import MyAlgo

myAlgo = MyAlgo(isData = not isMC)

result.addEventAlgo(myAlgo)

return result

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 21 / 88

AthenaMT and data access

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 22 / 88

AthenaMT: Intra-event parallelism

Task scheduling based on the Intel
Thread Building Blocks library with a
custom graph scheduler.
Algorithms declare their inputs and
outputs.

Scheduler finds an algorithm
with all inputs available and
runs it as a task.

“Data flow.”

Flexible parallelism within an event.

Can still declare sequences of algo-
rithms that must execute in fixed
order (“control flow”).

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 23 / 88

AthenaMT: Inter-event parallelism

Allow multiple event stores (“slots”).

Allows parallelism both within and event and between events.

Number of simultaneous events in flight is configurable.

Different shapes: different algorithms; different colors: different events.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 24 / 88

Algorithm dependency declarations

Algorithm data dependencies declared via special properties (HandleKey).

SG::WriteHandleKey<X> m_xKey { this, "XKey", "x" };

Used together with an event context that identifies the particular event
slot being used:

SG::WriteHandle<X> x (m_xKey, ctx);

ATH_CHECK(x.record (std::make_unique<X>()));

// Can modify the object until the WriteHandle is deleted.

x->set (something);

Context argument may be omitted — will then be read from a thread-
local global.

Dependencies of tools will be propagated up to their owning algorithms.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 25 / 88

Algorithm types
By default Algorithms are singletons, and a given algorithm cannot be
executing simultaneously in more than one thread.

Algorithms may be declared clonable. Multiple copies of the Algorithm are
made and can be executing simultaneously.

virtual StatusCode execute();

Algorithms declared reentrant are singletons but may execute in multiple
threads. Any internal mutable state must be thread-safe.

virtual StatusCode execute r(const EventContext&) const;

Services are singletons and
must be explicitly thread-safe.

Tools obey the same rules as their owning Algorithms. Services are singletons and must be explicitly thread-safe.
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 26 / 88

Example: algorithm class declaration

class ExampleAlg

: public AthReentrantAlgorithm

{

public:

using AthReentrantAlgorithm::AthReentrantAlgorithm;

virtual StatusCode initialize() override;

virtual StatusCode execute_r (const EventContext& ctx)

const override;

private:

// Declare the keys used to access the data: one for reading

// and one for writing.

SG::ReadHandleKey<MyDataObj> m_readKey

{ this, "ReadKey", "in" };

SG::WriteHandleKey<MyDataObj> m_writeKey

{ this, "WriteKey", "out" };

};

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 27 / 88

Example: algorithm initialize

StatusCode ExampleAlg::initialize()

{

// Can make changes to the key properties here.

// This will check that the properties were initialized

// properly by job configuration.

ATH_CHECK(m_readKey.initialize());

ATH_CHECK(m_writeKey.initialize());

return StatusCode::SUCCESS;

}

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 28 / 88

Example: algorithm execute

StatusCode ExampleAlg::execute_r (const EventContext& ctx) const

{

// Construct handles from the keys.

// Since this is a reentrant algorithm, we have an explicit

// event context, which we pass to the handles.

SG::ReadHandle<MyDataObj> h_read (m_readKey, ctx);

SG::WriteHandle<MyDataObj> h_write (m_writeKey, ctx);

// Now we can dereference the read handle to access input data.

int newval = h_read->val()+1;

// We make a new object, held by a unique_ptr, and record it

// in the store using the record method of the handle.

auto newobj = std::make_unique<MyDataObj> (newval);

ATH_CHECK(h_write.record (std::move (newobj)));

return StatusCode::SUCCESS;

}

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 29 / 88

Conditions

Calibrations, etc. depending on event number or time.
Different events may use different conditions versions.

Conditions store holds potentially multiple versions of conditions objects.

CondInputLoader algorithm loads needed conditions for each event.

To apply a transforma-
tion to conditions data,
use a ‘conditions algo-
rithm’ acting on data in
the conditions store.

Algorithms access condi-
tions data via handles.

Scheduler knows about dependencies and schedules them accordingly.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 30 / 88

After an object is added to a conditions container, we clean old conditions
in that container some number of events later. The oldest objects in the
container that have not been used by any recent events are deleted.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 31 / 88

Conditions example

Reading conditions data works just like reading event data except for the
handle type.

class ExampleAlg : public AthReentrantAlgorithm

{ ...

SG::ReadCondHandleKey<CondObj> m_condKey

{ this, "CondKey", "condobj" };

StatusCode ExampleAlg::execute_r (const EventContext& ctx) const

{

SG::ReadCondHandle<CondObj> condObj (m_condKey, ctx);

float scaleFac = condObj->scaleFac();

Conditions objects being read from the database need to be associated
with the proper database key in job configuration.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 32 / 88

Conditions algorithm example: definition

class CondAlg : public AthReentrantAlgorithm

{

public:

using AthReentrantAlgorithm::AthReentrantAlgorithm;

virtual StatusCode initialize() override;

virtual StatusCode execute_r (const EventContext& ctx) const override;

private:

SG::ReadCondHandleKey<CondObj1> m_condObj1Key

{ this, "CondObj1Key", "condobj1" };

SG::WriteCondHandleKey<CondObj2> m_condObj2Key

{ this, "CondObj2Key", "condobj2" };

};

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 33 / 88

Conditions algorithm example: initialize

StatusCode CondAlg::initialize()

{

ATH_CHECK(m_condObj1Key.initialize());

ATH_CHECK(m_condObj2Key.initialize());

return StatusCode::SUCCESS;

}

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 34 / 88

Conditions algorithm example: execute

StatusCode CondAlg::execute_r (const EventContext& ctx) const

{

SG::ReadCondHandle<CondObj1> condObj1 (m_condObj1Key, ctx);

auto c2 = std::make_unique<CondObj2> (condObj1->something());

// Propagate validity range from input to output.

// For the case of multiple inputs, there are helpers to find

// the intersection of all input validity ranges.

EventIDRange range;

ATH_CHECK(condObj1.range(range));

SG::WriteCondHandle<CondObj2> condObj2 (m_condObj2Key, ctx);

ATH_CHECK(condObj2.record (range, std::move(c2)));

}

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 35 / 88

StoreGate

Service that holds transient data.
Different instances corresponding to different data lifetimes:

I Event store: Data for the current event. Internally split into a separate
store for each slot.

I Detector store: Data describing the detector which doesn’t change
during the job. (Currently also contains some conditions data.)

I Conditions core: Data with a limited range of validity (run/event or
time based).

I Metadata stores: Used to record and propagate data describing a set of
events.

I Pileup stores: Used for pileup simulation, which overlaps multiple input
events.

Essentially a map from (type,key) pairs to DataProxy instances.
I Same proxy can be entered with different types/keys (symlinks/aliases).

type represented by an integer ID (Class ID), assigned via a macro in
the class headers.

DataProxy implements deferred reading/creation of objects.

Stores provide abstract IProxyDict interface, used by handles.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 36 / 88

Trigger
Want high-level trigger to use the same algorithms as the offline code.
For performance, trigger does reconstruction only within geometrically
limited regions of interest (ROI).

EventView: Stores data for one ROI and implements the same interface
as the full event store.

Algorithms that access data via handles can transparently run in an
EventView rather than the full store.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 37 / 88

Algorithm/tool/service migration

Algorithms/tools need to change to handles to access
event/conditions data.

Change to using conditions algorithms rather than callbacks.

Event data must not be modified once recorded in the event store.

Avoid thread-unfriendly code: use of statics, const-correctness
violations.

Services need to be explicitly thread-safe.

Reentrant algorithms that have mutable data must be explicitly
thread-safe.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 38 / 88

Thread-safety static checker

Have a static checker available to flag some thread-safety problems.
I Mostly relating to const-correctness and use of static data.

Set of checks similar to that done by the CMS checker.
I But implemented within gcc rather than clang, so they can run as part

of the default build.

Gives warnings like:

ArenaSharedHeapSTLAllocator.icc:499:10: warning: Static

expression ’SG::ArenaSharedHeapSTLAllocator<Payload>::s_index’

passed to pointer or reference function argument of

’SG::ArenaHeapAllocator* SG::ArenaSharedHeapSTLHeader::get_pool(size_t&) [with T = Payload]’

within function ’void SG::ArenaSharedHeapSTLAllocator<T>::get_pool() const [with T = Payload]’;

may not be thread-safe.

m_pool = m_header->get_pool<T> (s_index);

Also has checks related to naming conventions and other coding style
issues.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 39 / 88

Data model

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 40 / 88

DataVector

Objects stored StoreGate may be of arbitrary type.

Aside from a few singleton objects and some special cases for raw
data, most event data objects are specializations of DataVector.

DataVector<T> acts like std::vector<T*> with some additional
features:

I Optional strict-ownership semantics.
I Container covariance.
I const propagation to elements.
I Auxiliary store.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 41 / 88

DataVector: Ownership semantics

By default, a DataVector takes ownership of objects it contains:

auto v = std::make_unique<DataVector<int> >();

// DataVector takes ownership of this object.

v->push_back (std::make_unique<int> (10));

// Deletes existing object.

(*v)[0] = std::make_unique<int> (12);

Copying between owning containers is not allowed:

DataVector<int> v1;

v1.push_back (std::make_unique<int> (10));

DataVector<int> v2 (10);

v2[0] = v1[0]; // Will cause an assertion failure.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 42 / 88

DataVector: View containers

A DataVector can be initialized so that it doesn’t own its elements.

DataVector<int> v1 = ...;

DataVector<int> v2 (SG::VIEW_ELEMENTS);

// OK --- v2 doesn’t take ownership.

v2.push_back (v1->front());

// Copying gives a view container.

DataVector<int> v3 (v1);

Can be used to hold results of selections, or to logically merge
together multiple containers.

Same algorithmic code works in all cases.

Implies that implementation of DataVector cannot be simply a
collection of unique_ptr.

ViewVector<T> (deriving from DataVector<T>) used for view
containers that must be made persistent.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 43 / 88

23 C Leggett 2015-02-10

DataVector

Support for “Container Inheritance”

• If LArCell inherits from CaloCell we would like
vector<LArCell*> to inherit from vector<CaloCell*>

• Very useful when writing generic Algorithms/AlgTools
that loop over cells coming from different sub-detectors

• DataVector provides this functionality with minimal
performance impact, if any

CaloCell

LArCell

DataVector
<CaloCell>

DataVector
<LArCell>

If But

vector
<CaloCell*>

vector
<LArCell*>

Unfortunately

On Thursday, in Scott’s talk you’ll learn much more about

DataVector structure, in the context of xAOD containers

x

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 44 / 88

DataVector: Container covariance

With these declarations:

class B {};

class D : public B {};

DATAVECTOR_BASE (D, B);

Then DataVector<D> derives from DataVector.

For type-safety, can only insert via the most-derived type.

DataVector<D>* d = ...;

DataVector* b = d;

// Neither of these are allowed (will throw exceptions).

b->push_back (std::make_unique<D>());

b->push_back (std::make_unique());

When recorded in SG, can retrieve by any base type.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 45 / 88

DataVector: const propagation

Unlike vector<T*>, const accessors of DataVector<T> will return
only const T*.

const DataVector<C>& v = ...;

v[0]->changeSomething(); // Not allowed.

But

const DataVector<C>& v = ...;

auto vnew = std::make_unique<DataVector<C> >

(SG::VIEW_ELEMENTS);

vnew->push_back (v.front()); // Compilation error

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 46 / 88

DataVector: const propagation

Solve using ConstDataVector:

const DataVector<C>& v = ...;

auto vnew = std::make_unique<ConstDataVector<

DataVector<C> > >

(SG::VIEW_ELEMENTS);

vnew->push_back (v.front()); // OK

SG::WriteHandle<DataVector<C> > h (key, ctx);

// OK -- object can subsequently be retrieved as

// a const DataVector<C>.

ATH_CHECK(h.record (std::move (vnew));

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 47 / 88

24 C Leggett 2015-02-10

ElementLink

Persistable pointer to an element of a container
Usually a data member of a Data Object (e.g. Electron)

Filled when creating the host object (Electron)

ElementLink< TrackParticleContainer > m_trackParticle;

Different ways to set an ElementLink

m_trackParticle(“MyTracks”, 3) Fastest

m_trackParticle(pTrkColl, 3) OK

m_trackParticle (pTrackParticle, *pTrkColl) Careful! O(N)

Like ReadHandle, ElementLink only provides const access
 float chi2 = (*m_trackParticle)->chiSquared(); //OK

 (*m_trackParticle)->setFitQuality(chi2, nDOF); //ERROR

DataLink persistable pointer to a Data Object in SG

Trk1

TPCont

Trk2

Trk3
EL

Electron

(”MyTracks”,3)

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 48 / 88

ElementLink
Persistable pointer to a collection element.

Holds collection name and element index.

Dereferencing the link returns a reference to
the element (a pointer in most cases).

DataLink points to a single object.

Electrons

Ele 0

Ele 1

Ele 2

Index 1

"Electrons"

Internally contains a pointer to the DataProxy and a cached copy of the
element.

const xAOD::Electron& ele = ...;

// Doesn’t force the TrackParticle to be constructed.

ElementLink<xAOD::TrackParticleContainer> link =

ele.trackParticleLink();

std::cout << link.dataID() << "/" << link.index() << "\n";

// This forces the TrackParticle to be read.

const xAOD::TrackParticle* part = *link;

// This does the same thing.

part = ele->trackParticle();

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 49 / 88

Desires for Run 2

Several Run 1 types supported adding extra named pieces of data —
“decorations” — to elements of containers.

Originally done to be able to separate pieces of the structure for I/O.

Several different, incompatible implementations.

Can we unify this?

Data stored as, essentially, “array of structures.”

Poor locality of reference.

“Structure of arrays” might be better.

Can we still make it look like a collection of structures?

Make data easily and efficiently readable from ROOT.

Avoid copies.

Partial object reading / writing.

User extensibility for analysis.

Keep existing interfaces as must as possible.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 50 / 88

Run 2 event data model
Analysis-level event data model redesigned for Run 2. (“xAOD”)

Simplify, and make more directly usable with ROOT.

Based on new “auxiliary data” feature of DataVector.

Attach data of arbitrary type to elements of DataVector.
Data are stored as vectors, managed via separate “auxiliary store”
object via abstract interface.
Object data stored as auxiliary data rather than in the object itself.

Almost all object data stored as auxiliary data.
DataVector<Foo>

AuxElement 0

Foo

Foo

AuxElement 1

Foo

AuxElement 2

IAuxStore

vector<int>

 "anInt"

vector<float>

 "aFloat"

anInt()

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 51 / 88

Auxiliary data

Most xAOD object data are not stored in the xAOD objects
themselves, but in a separate “auxiliary store”.

Object data stored as vectors of values.
I (“Structure of arrays” versus “array of structures.”)

Allows for better interaction with root, partial reading of objects, and
user extension of objects.

The store is associated with a container.
I When creating a container, need to create a store too.
I Generally can’t call getters/setters for objects that are not part of a

container.
I Use care when moving objects between containers.

Use the xAOD class interface to access standard data members.

User analysis code can add custom “decorations” to objects.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 52 / 88

Usage example 1

struct C : public AuxElement {

int anInt() const {

static const Accessor<int> acc("anInt");

return acc(*this); }

int setAnInt (int x) {

static const Accessor<int> acc("anInt");

acc(*this) = x; }

}; ...

auto vc = std::make_unique<DataVector<C> >();

// Aux data store.

auto store = std::make_unique<CAuxContainer>();

vc->setStore (store.get());

// Record both vector and store. Does setStore() if not

// already done. Aux store key ends with Aux.

SG::ReadHandle<DataVector<C> > h (key, ctx);

ATH_CHECK(h.record (std::move (vc), std::move (store)));
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 53 / 88

Usage example 2

vc->push_back (std::make_unique<C>());

vc->push_back (std::make_unique<C>());

// Set/get auxiliary data through class members.

(*vc)[0]->setAnInt (3);

std::cout << (*vc)[0]->anInt() << "\n";

// Attach additional auxiliary data to objects.

// The Accessor object caches the lookup of an internal

// identifier from the data item name.

static const C::Accessor<int> myInt ("myInt");

myInt((*vc)[0]) = 2;

myInt(*vc, 1) = myInt(vc[0]) + 1;

// Alternate interface that does not cache the lookup.

(*vc)[1]->auxdata<float> ("myFloat") = 1.5;

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 54 / 88

Auxiliary data decorations

// A typedef for DataVector<xAOD::Electron>

const xAOD::ElectronContainer& eles = ...;

// Set a decoration on the electron. (All other objects

// in eles will now have fdecor == 0.)

eles[0]->auxdecor<float>("fdecor") = 1.2;

// Test if a decoration is available and retrieve it.

if (ele.isAvailable<int> ("idecor"))

i = eles[0]->auxdecor<int> ("idecor");

// If used in a loop, best to cache the name lookup.

SG::AuxElement::Decorator<int> idecor ("idecor");

for (const xAOD::Electron* e : eles) {

if (idecor.isAvailable (*e))

i += idecor(*e);

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 55 / 88

Data access: Decoration handles
An xAOD object in the event store may have additional auxiliary data
added to it, even if it is locked. “decorations.” Decorations are in some
respect like independent data objects, and the scheduler should be aware
of them.

WriteDecorHandle

class MyAlg { ...

SG::WriteDecorHandleKey<MyCont> m_key; }

MyAlg::MyAlg(...) {

declareProperty ("Key", m_key = "Obj.d"); ...

StatusCode MyAlg::initialize() { ...

ATH_CHECK(m_key.initialize());

StatusCode MyAlg::execute_r (const EventContext& ctx) const { ...

SG::WriteDecorHandle<MyCont, float> h (m_key, ctx);

for (const MyObj& o : *h) { // Access the container.

h (o) = calculate (o); // Add the decoration.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 56 / 88

Data access: Decoration handles

ReadDecorHandle

class MyAlg { ...

SG::ReadDecorHandleKey<MyCont> m_key; }

MyAlg::MyAlg(...) {

declareProperty ("Key", m_key = "Obj.d"); ...

StatusCode MyAlg::initialize() { ...

ATH_CHECK(m_key.initialize());

StatusCode MyAlg::execute_r (const EventContext& ctx) const { ...

SG::ReadDecorHandle<MyCont, float> h (m_key, ctx);

for (const MyObj& o : *h) { // Access the container.

doSomething (h (o)); // Access the decoration.

See MultiThreadingEventDataAccess twiki page for more details.

Decoration will be locked when the WriteDecorHandle goes away.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 57 / 88

Standalone objects
The auxiliary data for an object are associated with the container. But
what if you want to have an object that is not part of a container?
Call makePrivateStore on the object to create a private aux data
store associated with the object itself. If the object is later added to a
container, the aux data will be copied and the private store deleted. If
it is later removed from the container, the private store will be
recreated and repopulated.

class C : public AuxElement {};

auto c = std::make_unique<C>(); c->makePrivateStore();

static const C::Accessor<int> anInt ("anInt");

anInt(*c) = 5; // In c’s private store.

DataVector<C>& vc = ...;

vc. push_back (std::move(c)); // c’s private store deleted,

// data copied to container’s store.

...

// Get container to give up ownership:

vc.swapElement (vc.begin(), nullptr, c);

// c’s private store recreated.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 58 / 88

I/O interaction

DataVector<T> itself saved to ROOT like vector<T>

The aux store for xAOD types is a “static” class containing the aux vari-
able vectors as members. Saved and loaded as a single object.

The static store references a “dynamic” store, which can manage arbi-
trary aux data. New aux data items are added here. Items can be saved
and loaded individually from ROOT. Branch objects are set to the vectors
managed here.

"extra"

...

TBranches

DataVector<Electron> IAuxStore IAuxStore

"pt" "eta"

...

ElectronAuxContainer AuxStoreInternal

Eles ElesAux.
ElesAuxDyn.

 extra

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 59 / 88

xAOD implementation

Each xAOD data class (DataVector<xAOD::Muon_v1>) has an
associated aux store object (xAOD::MuonAuxContainer_v1).

Both are recorded in StoreGate. The key for the aux store should be
the same as the data object with ‘Aux.’ appended.

The xAOD aux store object contains the ‘static’ aux variables.

It also holds a SG::AuxStoreInternal object which manages any
additional ‘dynamic’ variables.

Brief rundown of important interfaces:
I IConstAuxStore — Methods for reading data from an aux store (and

adding decorations).
I IAuxStore — Methods for changing data in an aux store.
I IAuxStoreIO — Methods for accessing aux data items for writing.
I IAuxStoreHolder — An aux store that can hold another one.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 60 / 88

IAuxStore
A key feature is the ability to change the auxiliary store implementation
through the abstract interface. Some types used:
Each xAOD type has a static auxiliary store chained to a dynamic store.

In trigger: implementation specialized for storage in raw data stream.

On input: implementation allowing on-demand reading of items.

“Shallow copy” store: records writes, forwards reads for unknown items to
another store.

ShallowAuxContainer

AuxStoreInternal

DataVector<T>

shallow copy

DataVector<T>

original

parent

internal

"eta"

"pt" "eta"

...

TAuxContainer

"extra"
Overrides

 original

 item

Adds new

 item

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 61 / 88

Shallow copy
Can make a “shallow copy” of a container:

const DataVector<Foo>* vec = ...;

auto ret = xAOD::shallowCopyContainer (*vec);

//ret.first is a pointer to a new DataVector.

//ret.second is a pointer to the corresponding aux store.

The copied aux store will contain a reference to the original store.
Writes will go to the copied aux store.
Reads will be searched for first in the copied store, then in the original
store.
Reference between stores is via DataLink, so a shallow-copied
container can be written without problem.
Limitation: you cannot change the ordering of the elements in the
copied container (as indices must remain consistent with the original).

I May be possible to relax this, but non-trivial. Under consideration.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 62 / 88

Auxiliary data and view containers

DataVector<Foo>

AuxElement 0

Foo

Foo

AuxElement 1

IAuxStore

vector<int>

 "anInt"

vector<float>

 "aFloat"

anInt()

(View container)

Foo

AuxElement 0

IAuxStore

View containers do not have their own aux store; rather, they reference
elements that live in other containers. View containers of objects with aux
data cannot be safely written as-is.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 63 / 88

Implementation notes

Types with aux data derive from
AuxElement: holds a reference to
the container and the element index.

Updated by vector operations.

No overhead for types that do
not derive from AuxElement.

Aux data items identified by
small integers via a registry.
DataVector holds cache of point-
ers to start of data for each item.
If pointer is in cache, access is en-
tirely inlined. Otherwise, calls to
out-of-line code.

DataVector<Foo>

AuxElement 0

Foo

Foo

AuxElement 1

vector<int>

 "anInt"

vector<float>

 "aFloat"

IAuxStore

cache

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 64 / 88

Vectorizable data access

Accessing aux data via dereferencing an element pointer is not
vectorizable.

Alternate interfaces exist that could allow vectorization.

const DataVector<C>& vc = ...;

static const C::Accessor<float> f ("var");

// Access by index.

float x = 0;

for (size_t i = 0; i < vc.size(); i++) {

x += f (vc, i);

}

// Get array directly.

const float* fvar = f.getDataArray (vc);

Not currently used by any algorithmic code.
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 65 / 88

xAOD class example

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 66 / 88

xAODPackage/xAODPackage/versions/MyClass_v1.h

namespace xAOD {

class MyClass_v1 : public SG::AuxElement {

public:

float x() const;

void setX (float x);

};

} // namespace xAOD

SG_BASE(xAOD::MyClass_v1, SG::AuxElement);

xAODPackage/Root/MyClass_v1.cpp

#include "xAODPackage/versions/MyClass_v1.h"

#include "xAODCore/AuxStoreAccessorMacros.h"

namespace xAOD {

AUXSTORE_PRIMITIVE_SETTER_AND_GETTER (MyClass_v1, float,

x, setX)

}
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 67 / 88

xAODPackage/xAODPackage/versions/MyClassAuxContainer_v1.h

namespace xAOD {

class MyClassAuxContainer_v1 : public xAOD::AuxContainerBase {

public:

MyClassAuxContainer_v1();

float x;

};

} // namespace xAOD

SG_BASE(xAOD::MyClassAuxContainer_v1,

xAOD::AuxContainerBase);

xAODPackage/Root/MyClassAuxContainer_v1.cxx

namespace xAOD {

MyClassAuxContainer_v1::MyClassAuxContainer_v1() {

AUX_VARIABLE(x)

} }

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 68 / 88

xAODPackage/xAODPackage/MyClass.h

#include "Package/versions/MyClass_v1.h"

namespace xAOD {

typedef MyClass_v1 MyClass;

}

CLASS_DEF(xAOD::MyClass, 345346456, 1)

xAODPackage/xAODPackage/MyClassAuxContainer.h

#include "Package/versions/MyClassAuxContainer_v1.h"

namespace xAOD {

typedef MyClassAuxContainer_v1 MyClassAuxContainer;

}

CLASS_DEF(xAOD::MyClassAuxContainer, 345346457, 1)

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 69 / 88

Extras

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 70 / 88

Input renaming

Recall that for the MT framework, we want to nearly eliminate the use of
overwrite/update.

Thread safety much more difficult to achieve if data can change.

Need to have a different way of dealing with situations that currently use
overwrite/update.

Example: filtering job.

Takes a file, transform it, and write out a new file.

Output file should use the same keys as the input file.

How to set this up without update/overwrite?

Suggestion: allow changing the names by which input objects are
seen in SG.

I So can rename, for example, Foo to Foo_in and then have an
algorithm that produces Foo from Foo_in.

May also be useful for fix-type jobs.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 71 / 88

Data access: Object/decoration renaming and hiding
Reminder: objects may be renamed on input. Useful for reprocessing jobs.

from SGComps.AddressRemappingSvc import addInputRename

Object CVec/cvec in the input file will appear in SG as cvec2.

addInputRename (’CVec’, ’cvec’, ’cvec2’)

Decorations may now be renamed in exactly the same way.

Rename decoration anInt of dvec to anInt2.

addInputRename (’DVec’, ’dvec.anInt’, ’dvec.anInt2’)

Renaming both object and decoration.

addInputRename (’CVec’, ’cvec.anInt’, ’cvec_renamed.anInt2’)

New helper function to hide objects/decorations on input (by renaming):

from RecExConfig.hideInput import hideInput

hideInput (’CVec’, ’cvec’) # Hide object

hideInput (’DVec’, ’dvec.anInt’) # Hide decoration

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 72 / 88

Input hiding

If an object is listed in a WriteHandle, then an object of that name
will not be read from the input file.

Useful for configuring reprocessing jobs.

In the case where you want to modify an object from an input file,
rename the existing object:

from SGComps.AddressRemappingSvc import addInputRename

addInputRename ("Foo", "foo", "foo_old")

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 73 / 88

xAOD implementation

xAOD::MuonContainer=

xAOD::MuonContainer_v1 =

DataVector<xAOD::Muon_v1>

xAOD::Muon=

xAOD::Muon_v1

SG::AuxElement

xAOD::MuonAuxContainer=

xAOD::MuonAuxContainer_v1

SG::AuxVectorBase

SG::AuxVectorData

xAOD::AuxContainerBase

SG::IAuxStore

SG::IAuxStoreIOSG::IAuxStoreHolder SG::ILockable

SG::IConstAuxStore

Both ptr and DataLink

SG::AuxStoreInternal

SG::IAuxStore
SG::IAuxStoreIO

SG::IConstAuxStore

"decor"

"pt" "eta"

...

"Muons" "MuonsAux."

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 74 / 88

Writing aux data

xAOD::Muon

SG::IAuxStoreIO

SG::AuxStoreInternal

"decor"

"pt" "eta"

...

"Muons" "MuonsAux."

xAOD::Muon ...

"Muons"

...

"MuonsAux.pt"

...

"MuonsAuxDyn.decor"

Container and aux container should both be stored separately in
StoreGate. Both should be listed in the item list for writing:

fillItemList += [’xAOD::Muon_v1#Muons’]

fillItemList += [’xAOD::MuonAuxContainer_v1#MuonsAux.’]

DataVector<T> will be saved using a custom collection proxy that
make makes it appear to root like vector<T>.
Aux store object saved using normal ROOT I/O. Split level fixed to 1.
Objects supporting the SG::IAuxStoreIO interface will have
additional “dynamic” branches written (by RootTreeContainer).
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 75 / 88

Reading aux data

DataVector<T> objects read as usual, again through the custom
collection proxy.

I xAOD Gaudi converter will usually set a DataLink in the DataVector

pointing to the correct aux store object (via name).

Aux store object read via root as usual.

If the aux store object derives from SG::IAuxStoreHolder:
I I/O system will create a special aux store object for reading dynamic

branches (AuxStoreAPR).
I This will be attached to the primary store object through the

SG::IAuxStoreHolder interface.
I AuxStoreAPR will collect information about “Dyn.” branches and read

them on demand.
I If type information is not available statically, root metadata will be

used to handle the branches dynamically.

In Athena, reading currently reads the entire static aux store object.
I Should look into providing an option to read it piecewise.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 76 / 88

Implementation notes: aux data type registry

Each distinct aux data item is represented internally by a small
integer.

A singleton registry class maps from aux data item name to id and
type (type_info).

Accessor class caches the id lookup.

Registry class also maps from type_info to factory objects that can
create STL vectors of a given type and provide interfaces to
manipulate them generically.

Such factory objects can come from:
I Factory objects are pre-defined for built-in C++ types.
I The template instantiation of an Accessor. Instantiating

Accessor<Foo> will provide a factory object for Foo.
I When reading a file if a factory for Foo is needed, the ROOT reflection

mechanism will be used to try to dynamically load
AuxVectorFactory<Foo>. If that fails, a completely generic
implementation based on ROOT’s I/O mechanism is used.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 77 / 88

Implementation notes: index tracking

To access auxiliary data given a pointer to an collection element, the
element needs to know its container and the index within the
container.

Stored within the AuxElement base class.

If a DataVector owns its elements, and the element class derives
from AuxElement, then inserting an element in the container
automatically sets the container/index within AuxElement.

All vector operations extended to maintain this index information.
(Vectors of aux data are also manipulated as required.)

If the element class does not derive from AuxElement, template
techniques are used to elide the index tracking operations. (No
overhead if you don’t use it.)

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 78 / 88

Implementation notes: aux data dereferencing 1
Want as little overhead as possible in accessing aux data.
Would like to at least preserve the possibility of vectorizing loops over
the container that access aux data. Not really possible if one goes
though the pointer dereference, but would like to be able to vectorize
something like:

DataVector<C>& vc = ...;

static const C::Accessor<float> a ("a");

static const C::Accessor<float> b ("b");

static const C::Accessor<float> c ("c");

for (size_t i = 0; i < vc.size(); i++)

c(vc,i) = a(vc,i) + b(vc,i);

Container class contains a vector of pointers to the starting addresses
of the variable vector, indexed by aux data id.
If aux data item is in cache, dereference is entirely inline.
Otherwise, call out-of-line code that fetches the vector from the store.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 79 / 88

Implementation notes: aux data dereferencing 2
Actual dereferencing written as something like this (simplified a bit):

template <class T>

T& getData (size_t auxid, size_t i)

{

return reinterpret_cast<T*>(getDataArray(auxid))[i];

}

void* getDataArray (size_t auxid)

{

if (auxid >= m_cache_len || m_cache[auxid] == 0) {

getDataArrayOol (auxid);

// Inform compiler of postcondition

if (auxid >= m_cache_len || m_cache[auxid] == 0)

__builtin_unreachable();

}

return m_cache[auxid];

}

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 80 / 88

Implementation notes: aux data dereferencing 2

getDataArrayOol has a postcondition that the cache entry is valid.
So we only need to do the test the first time a given aux item is
accessed (assuming nothing happens that clobbers memory).

The __builtin_unreachable call is to inform the compiler of this
postcondition.

Can compilers take advantage of this?

If no loops, then both gcc and icc can: they compile this

v.getData<float>(auxid,0) + v.getData<float>(auxid,1);

to something that ends with (after possibly calling the Ool function
once):

movss (%rdx), %xmm0

addss 4(%rdx), %xmm0

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 81 / 88

Implementation notes: aux data dereferencing 3
Loops aren’t quite there yet though. This:

float sum = v.getData<float>(auxid,0);

for (size_t i = 1; i < 10; i++)

sum += v.getData<float>(auxid,i);

compiles to an inner loop like this with icc (-O3):

movss (%rcx), %xmm0

..B3.9: addss (%rcx,%r12,4), %xmm0

incq %r12 ; loop index

cmpq $10, %r12

jae ..B3.18

testq %rcx, %rcx ; m_cache[auxid]

jne ..B3.9

The code generated by gcc is similar, except that it elides the test on
m_cache[auxid] but retains the test on m_cache_len.
Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 82 / 88

Special-purpose allocators

Efficiently allocating blocks of varying sizes is a difficult problem.
But allocating blocks of a single size is much easier.
It can also help performance to group objects of like type together.

Block allocators

Allocate memory from malloc in big chunks.
Divide these into many fixed-size blocks.

Also allow all objects to be freed at once, rather than individually.

Arena allocators

One implementation is the Arena* classes in DataModel.
Only a brief overview given here — for more details, start with
DataModel/Arena.h.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 83 / 88

Basic Arena use

#include "DataModel/ArenaHande.h"

#include "DataModel/ArenaPoolAllocator.h"

struct MyType { MyType(int); };

...

// Create during initialization.

SG::ArenaHandle<MyType, SG::ArenaPoolAllocator> handle;

// Allocate

Mytype* p = new (handle.allocate()) MyType (10);

All MyType objects allocated this way will be grouped together in memory.
They will be automatically deleted at the end of the event.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 84 / 88

Arena Allocators
Second Handle template argument is the type of the memory allocator.

ArenaHeapAllocator

Allows deleting individual elements.

p = new (handle.allocate()) MyType;

...

handle.free (p);

ArenaPoolAllocator

Cannot delete individual elements, just the entire pool. Slightly less
overhead than heap.

p = new (handle.allocate()) MyType;

...

handle.reset(); // Elements freed, underlying memory kept.

handle.erase(); // Elements + underlying memory freed.

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 85 / 88

Multiple arenas

SG::ArenaHandle<MyType, SG::ArenaPoolAllocator> handle;

handle.reset();

Will free all instances of MyType that have been allocated with any handle
of this type.
To have objects with differing lifetimes, use another Arena:

SG::Arena myarena;

{

SG::Arena::Push apush (myarena);

// Allocate from myarena,

p = new (handle.allocate());

}

// Back to previous arena.

// Free all elements in myarena.

myarena.reset();

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 86 / 88

STL allocators

ArenaPoolSTLAllocator

Simple block-based allocator for STL types. Memory is owned by the
container. Individual elements cannot be freed; memory is released only
when the container is deleted.
Suitable for containers that allocate a single fixed-size node type, such as
list, map, set. unordered_map/set will also work, but the
variable-length allocations of those types will use the normal allocator.

#include "DataModel/tools/ArenaPoolSTLAllocator.h"

typedef SG::ArenaPoolSTLAllocator<int> alloc_t;

typedef std::list<int, alloc_t> list_t;

list_t c;

c.push_back (1);

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 87 / 88

STL allocators 2

ArenaSharedHeapSTLAllocator

A memory heap that can be shared between containers. Elements may be
deleted individually. Elements may be moved between containers using the
same heap.
Suitable for containers that allocate a single fixed-size node type, such as
list, map, set. unordered_map/set will also work, but the
variable-length allocations of those types will use the normal allocator.

typedef SG::ArenaSharedHeapSTLAllocator<int> alloc_t;

typedef std::map<int, float, std::less<int>, alloc_t> map_t;

alloc_t alloc;

map_t c1 (std::less<int>(), alloc);

map_t c2 (std::less<int>(), alloc);

c1[1] = 2;

c2[4] = 6;

Scott Snyder (BNL) ATLAS core software and EDM July 25, 2018 88 / 88

