

Magnetic measurements on MQXFS4a at cryogenic temperature

Lucio Fiscarelli

WP3 meeting, 11/07/2018

Outline

MQXFS4a

- At cryogenic temperature (1.9 K)
 - Magnetic measurement systems
 - Measurement results
 - Transfer function
 - Multipoles
 - Magnetic shimming
 - Field repeatability

Current cycles

Reference current levels

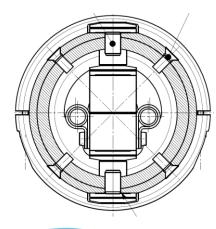
Current [kA]	Symbol	Gradient [T/m]	Remarks
0.02	I _{warm}	0.18	At ambient temperature
0.2	I _{res}	1.80	Reset level after pre-cycle. It was 0.1 kA on MQXFS5
0.96	l _{ini}	8.50	Injection level
6.0	l _{lim}	48.80	Current limit (pre-training)
16.48	I _{nom}	132.60	Nominal level
17.76	l _{ult}	143.20	Ultimate level

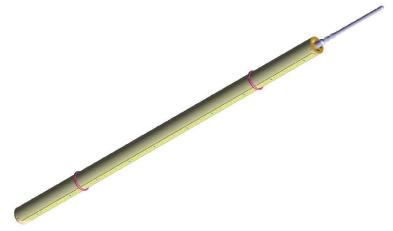
Pre-cycle (applied to all measurements):

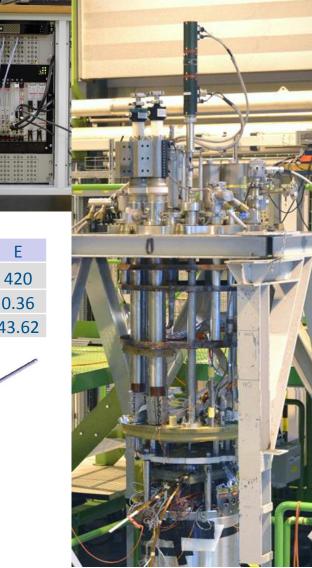
- From 100 to I_{nom} at 14 A/s,
- Hold for 300 s at I_{nom},
- Ramp down to I_{res} at 14 A/s
- Hold for 0 s at I_{res}
- Ramp to I_{inj} at 14 A/s

Studies performed:

- Stair-step cycle (21 current steps)
- Machine simulation cycles to I_{nom}
- Machine simulation cycles to I_{nom} with gradient coil

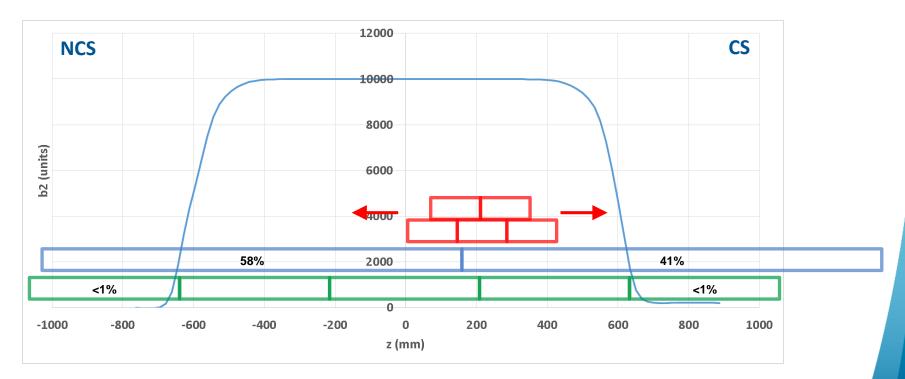



Measurement system at cryogenic temperature


FAME at cryogenic temperature in SM18

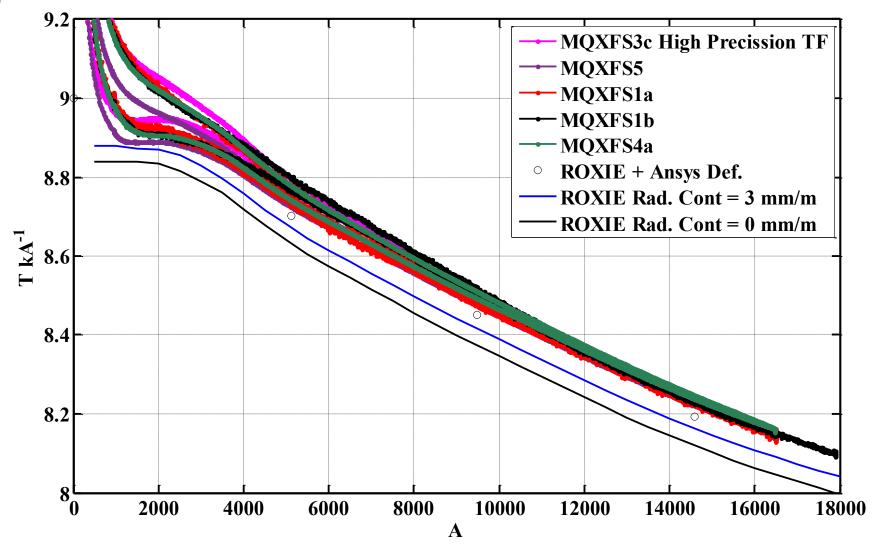
- FFMM software
- Fast Digital Integrators (10x)
- Motor + encoder + slip-ring unit (MRU)
- Vertical rotating shaft
 - L = 420 mm x 5 segments

Coil	unit	А	В	С	D	E
Inner length	mm	420	420	420	420	420
Magnetic surface	m²	0.36	0.36	0.36	0.36	0.36
Measurement radius	mm	43.62	19.6	0.03	19.6	43.62

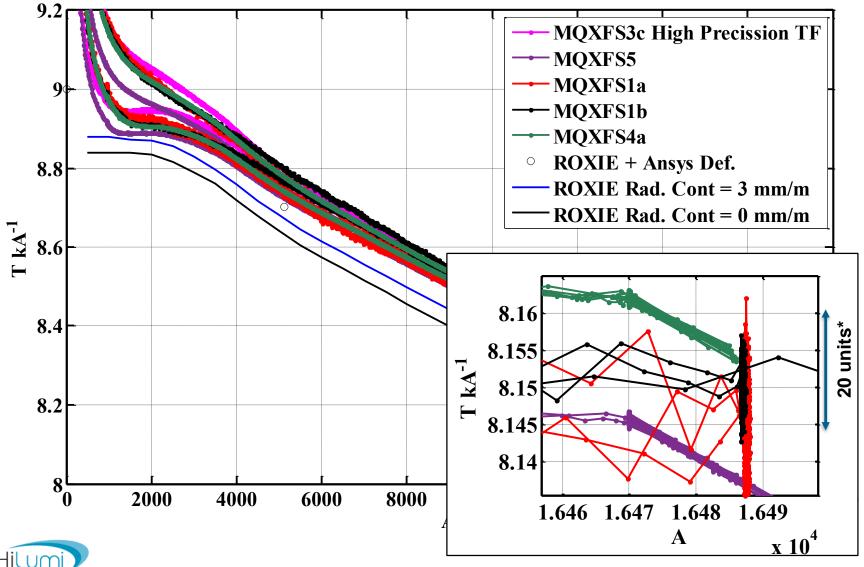

Position of the probes

Horizontal rotating shafts for measurements at room temperature

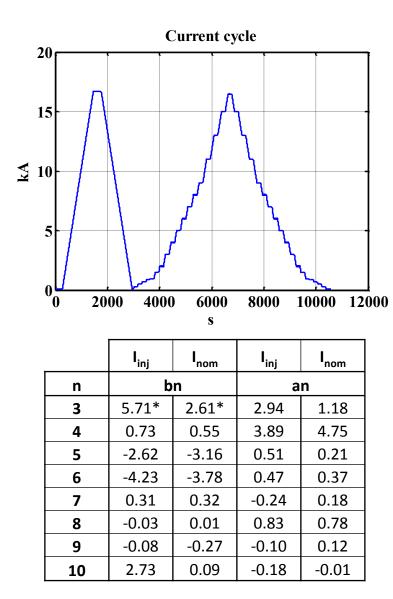
- L = 130 mm
- L = 1200 mm


Vertical rotating shafts for measurements at cryogenic temperature

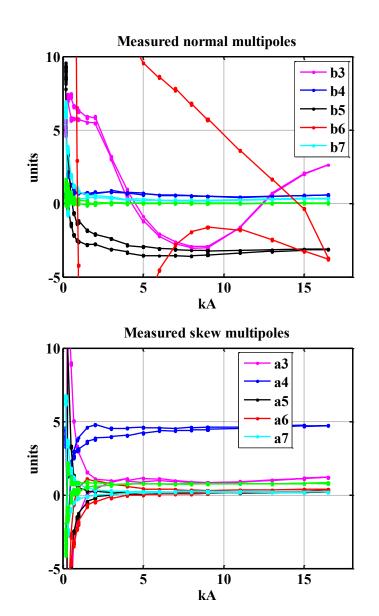
• 5 x L = 420 mm



Transfer function

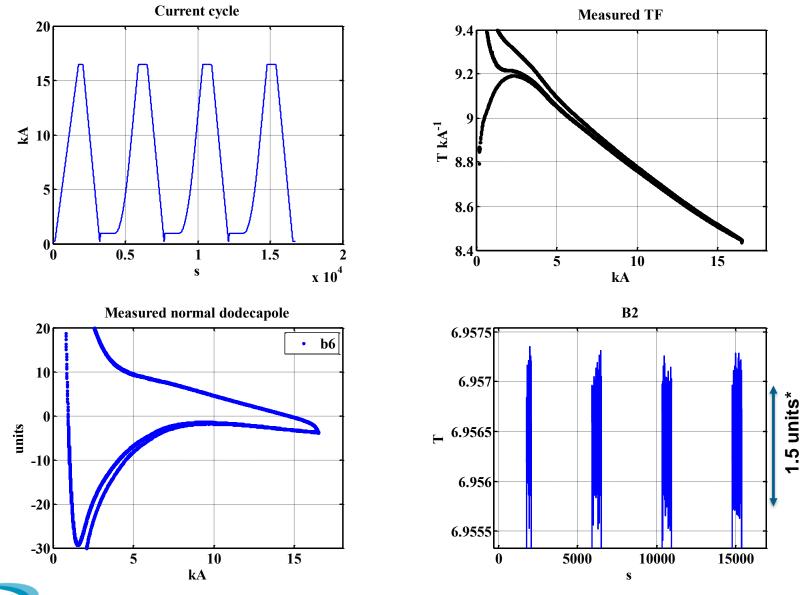


Transfer function



* In the same range of the measurement uncertainty (calibration)

Multipoles


* Magnetic shims

The reference frame is different wrt MM at ambient temperature

Field repeatability

HILUMI HL-LHC PROJECT

* In the same range of the measurement precision (noise)

Conclusions

MQXFS4a

- Preliminary results of MM tests at 1.9 K
 - Performed cycles: "stair step" and "machine cycles"
 - Transfer function in agreement with previous models
 - Multipoles same as at ambient temperature
 - Magnetic shimming with expected effect
 - Main field repeatability (cycle to cycle) ~ 1 unit

Status of magnetic measurement systems in view of next magnets

Lucio Fiscarelli

WP3 meeting, 11/07/2018

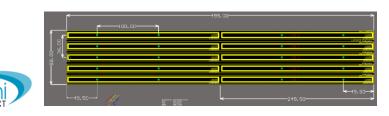
Outline

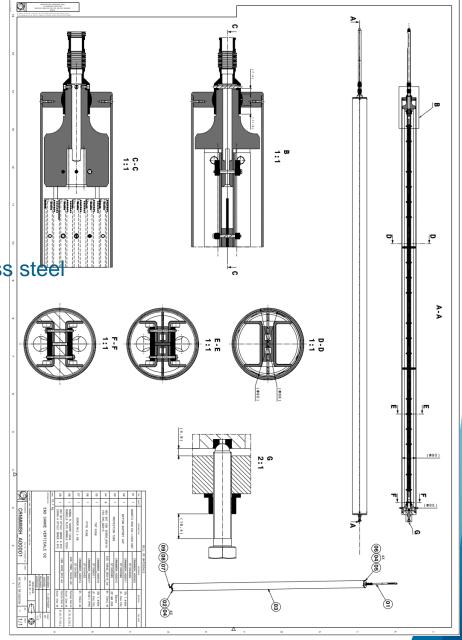
- MCBRDP1 "CCT proto"
 - September 2018
- MBRDS1 "D2 short model"
 - October 2018
- MCBXFBP1 "nested orbit corrector"
- HO "12-pole" and "skew quad" protos
 - December 2018
- MQXFBP1 "QXFB proto"
 - June 2019

MCBRDP1 and MBRDS1: new shafts

Ø 105 mm, L= 2.5 m, 5 (10) segments 3 shafts required

Structure elements (Design Office)

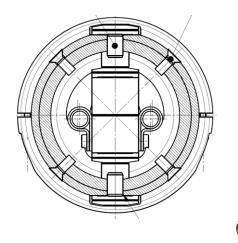

- ➢ 8 pieces
 - U-shaped profiles, G11
 - Shims, G11
 - End caps, G11
 - Protection tube, G11
 - Tube caps, stainless steel
 - Mechanical/electric extension, stainless steel


Final drawings released Procurement ongoing

PCBs (PCB service)

- 5 PCB's each shaft
- length 500 mm
- Coil length 500 mm or 2x 250 mm

PCB service is going to produce (1 month)

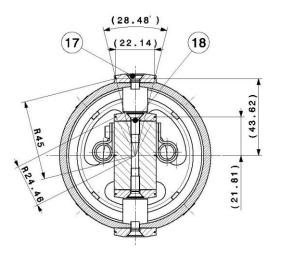


MCBXFBP1: reuse of existing shaft

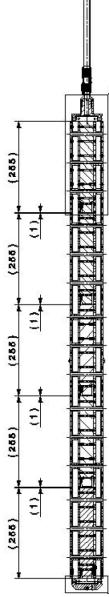
Shaft already used for MQXF short models

- Vertical rotating shaft
 - L = 420 mm x 5 segments

Coil		А	В	С	D	E
Inner length	mm	420	420	420	420	420
Magnetic surface	m ²	0.36	0.36	0.36	0.36	0.36
Measurement radius	mm	43.62	19.6	0.03	19.6	43.62


HO "12-pole" and "skew quad" protos: reuse of existing shafts

Shaft already used for other HO prototypes


- Vertical rotating shaft
 - L = 255 mm x 5 segments

Option to send the shaft to LASA and perform MM there

Coil		А	В	С	D	E
Inner length	mm	255	255	255	255	255
Magnetic surface	m ²	0.36	0.36	0.36	0.36	0.36
Measurement radius	mm	44	22	0	22	44

MQXFBP1 "QXFB proto"

At ambient temperature

- Rotating-coil scanner prototype
- A support tube with inner diameter 100 mm is required

At cryogenic temperature

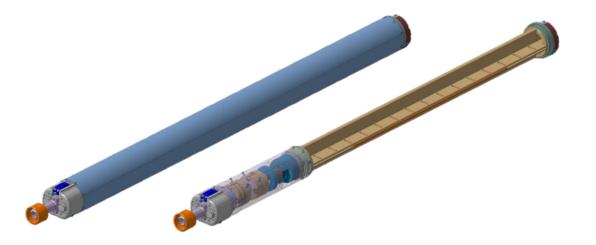
- Long shaft-chains
- An anti-cryostat is required

MQXFBP1: scanner prototype

"Travelling mole"

- Same approach as for the old "QIMM"
- On-board encoder and tilt sensor
- Motor unit fixed outside
- Mechanical extensions for translating and rotating the probe
- The probe is supported by a tube Ø 100 mm
- PCB coil with length 500 mm (100 mm)
- Measurement radius ~ 45 mm
- CCR targets for referring magnetic axis to external points
- Option for AC mode (to be tested)

The system is available and under test in our lab



MQXFBP1: scanner final version

- The design finished at the Design Office (production drawings)
- Open point on the inner diameter of the support tube
- The system for industry will require a positioning system
 - Motor unit on board and wire-actuated encoder
- This device will not measure the position of the cold bore tube (AC mole)

MQXFBP1: long shaft chains

- Design for the MQXFB prototype has to be lunched asap
 - Production lead time is >6 months
- Definition of some parameters
 - Diameter
 - Measurement coil length
- Drawings of cryo-assembly and anti-cryostat required
- Handling tools are required

MQXFBP1: long shaft chains

Carbon fiber shell + PCB radial coils

We have already produced 3 units (assembled and calibrated)

Accurate knowledge of the coil position (integral field, magnetic length, longitudinal center)

Conclusions

- MCBRDP1 and MBRDS1
 - New shafts are in production
 - Procurement of G11 structure
- MCBXFBP1 and HO correctors
 - Reuse of existing systems
- MQXFBP1 "QXFB proto"
 - At ambient temperature
 - We have a prototype system
 - At cryogenic temperature
 - Design and procurement of the systems (1 year)

