Tools for NNLO and

higher order computations

Fabrizio Caola, IPPP Durham

NNPDF \& N3PDF kick-off meeting, Gargnano, 17 September 2018

LHC: a precision machine

Current experimental precision for standard candles: ~percent or less

LHC: a precision machine

In the future: \sim few percent may be within experimental reach for a larger class of processes / observables

Example: Higgs couplings

ATLAS Simulation Preliminary

What to do with precision

- STUDY SM PARTICLES AND THEIR DYNAMICS, at unprecedented level of scrutiny. Stress-test SM (and our understanding of QFT)
- Precision is now also tool for discoveries

Imagine to have new physics at a scale Λ
\bullet if Λ small \rightarrow should see it directly, bump hunting. So far: only Higgs, $\Lambda \gtrsim \mathrm{TeV}$

- if Λ large, typical modification to observable w.r.t. standard model prediction: $\delta \mathrm{O} \sim \mathrm{Q}^{2} / \Lambda^{2}$
- standard observables at the EW scale: $\Lambda \gtrsim \mathrm{TeV} \Rightarrow \delta \mathrm{O} \sim$ percent

Experimentally within reach, must match on the theory side

QCD at colliders: the factorization formula

$$
\mathrm{d} \sigma=\int \mathrm{d} x_{1} \mathrm{~d} x_{2} f\left(x_{1}\right) f\left(x_{2}\right) \mathrm{d} \sigma_{\text {part }}\left(x_{1}, x_{2}\right) F_{J}\left(1+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / Q\right)\right)
$$

INPUT PARAMETERS: PDFS, α_{S}

- Accurate predictions for standard candles / evolution

Hard Scattering Matrix Element

- large $\mathrm{Q} \rightarrow$ theoretically clean
- $\alpha_{\mathrm{s}} \sim 0.1 \rightarrow$ For TYPICAL PROCESSES, we need NLO for $\sim 10 \%$ and NNLO for $\sim 1 \%$ accuracy. Processes with large color charges (Higgs): $\alpha_{S} C_{A} \sim 0.3 \rightarrow \mathrm{~N}^{3} \mathrm{LO}$

NON PERTURBATIVE EFFECTS:

- typical observable: $\mathrm{O}(\Lambda / \mathrm{Q}) \sim$ few percent
- No good control/ understanding of them at this level. Limiting Factor for Future Development [m_{t}, mw...]

Where can we achieve high accuracy?

Focus on simple [clean exp/th comparison, good control] processes, high scale [little non pert. contamination] observables. Typical examples:
$-\mathrm{V} / \mathrm{V}+\mathrm{j}(\mathrm{j}) \rightarrow$ PDFs, backgrounds
$\bullet t t$, single top \rightarrow gluon and b PDF, V_{tb}, backgrounds...
$\bullet j j(j) \rightarrow$ PDFs, jet dynamics, $\alpha_{s} \ldots$

- $\mathrm{H} / \mathrm{H}+\mathrm{j}(\mathrm{j}) / \mathrm{VH} \rightarrow$ Higgs couplings / characterization
- VV \rightarrow anomalous couplings, (Higgs) backgrounds...

Fixed order predictions:

- Able to provide High Precision while Properly Account for EXPERIMENTAL SETUP (cuts, fiducial region...)
- At high Q, typically processes are a multi-scale problem. However, no huge scale hierarchies \rightarrow fixed (high enough) order predictions correctly capture all the relevant logs

NNLO: the big picture

NNLO computations in a nutshell

$\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ corrections: two-loop (VV), one-loop+j (RV), tree $+\mathrm{jj}(R R)$
E.g. Higgs p_{t} : LO
W\%omg

NNLO
$\omega 1000000000$

Two Big Problems:

- loop amplitudes
- non trivial soft/collinear radiation patterns *must be properly dealt with ("subtracted") *especially challenging in presence of realistic cuts on final states

A NNLO timeline
2-loop amplitudes
for $j j, V+j$
new ideas for
multi-loop
computations:
VV,HH@2-loop
\uparrow
$20022004 \quad 2006 \quad 2008 \quad 2010 \quad 2012 \quad 2014 \quad 2016 \quad 2018$
subtraction
schemes for color
singlet processes

Fully inclusive
" $2 \rightarrow 1$ " reactions (DY, H, VH)

Fully inclusive VBF
subtraction schemes for color generic processes

H+J
tt, single-top
Z/W $/ \gamma^{+J}$
di-jet
VBF

WW, gg \rightarrow WW@NLO
ZZ gg \rightarrow WW@NLO
WZ
HH

Fully differential $2 \rightarrow 1$
~20-30 new calculations

NNLO at hadron colliders: the big picture

Higgs

$\bullet g g \rightarrow \mathrm{H} \bullet \bullet \bullet$ • public

- VBF ${ }_{\text {DIS }}$ - o public
- VH, H \rightarrow bb ••
- HH Heft
$\bullet \mathrm{H}+\mathrm{j} / \mathrm{p}_{\mathrm{t}, \mathrm{H}} \bullet \bullet$

Top

- tt - partially public (grids, fastNLO)
- $\mathrm{t}_{\text {-channel, DIS }} \bullet$ - [+decay]

VV

- $\gamma \gamma \bullet$ • public
- WW,WZ,ZZ, \underline{H} • public

DIS
\bullet ep \rightarrow jet • [also massive] • [+N3 LO]

- ep $\rightarrow 2$ jet \bullet

DY
-pp $\rightarrow \mathrm{V} \bullet \bullet \bullet$ public
$\bullet \underline{\mathrm{W}+\mathrm{j} / \mathrm{p}_{\mathrm{t}, \mathrm{W}} \bullet \bullet}$
$\bullet \mathrm{Z}+\mathrm{j} / \mathrm{p}_{\mathrm{t}, \mathrm{Z}} \bullet$ •APPLgrid

- $\gamma+\mathrm{j}$

Jets

- single inclusive -
- di-jet \bullet
- antenna - FKS+sector
decomposition (STRIPPER, nested subtraction...) • $q_{T}(+$ CoLoRFuLL $)$
- Njettiness/ SCET-based slicing
- Projection to Born

NNLO at hadron colliders: the big picture

Hig

\bullet g

- V
- V
\bullet -
-F

Tol
\bullet tt
$\bullet t_{t}$

- ㅂ

DIS

- ep-
- ep $\rightarrow 2$ jet \cdot

The upshot:

- $2 \rightarrow 2$ processes basically done
- In most cases, different calculations/techniques \rightarrow proper validation
- Very complicated calculations \rightarrow no "generic" public codes yet
- Investigations on different ways of disseminating results (fast tables, NTuples...)
- Color singlet processes: new general purposes codes available (MCFM, Matrix...)
- MCFM for non color-singlet (V/H+j) could be available in the near future
\bullet NNLOJet \rightarrow see Juan's talk

A striking omission: We

- In principle, subset of $\mathrm{W}+\mathrm{j} \rightarrow$ simple to compute
- However, it actually depends a lot on the proper definition of the process
- charm jet? Flavor Algorithm? Massive charm [complicated amplitude, large logarithms]
- D mesons? [fragmentation...]
- Wc/Wcc separation? [Wcc beyond current reach...]

$2 \rightarrow 2$ NNLO phenomenology: a quick overview

$2 \rightarrow 2$ pheno @ NNLO: the global picture

Greatly reduced theoretical uncertainties, perturbative convergence established

```
\(\sigma=48.58 \mathrm{pb}_{-3.27 \mathrm{pb}(-6.72 \%)}^{+2.22 \mathrm{pb}(+4.56 \%)}\) (theory) \(\pm 1.56 \mathrm{pb}(3.20 \%)\left(\mathrm{PDF}+\alpha_{s}\right)\).
```

Inclusive H@N33O
[Anastasiou, Duhr, Dulat, Herzog, Mistlberger]

Exclusive Higgs + jet
[Boughezal, et al; Chen et al; FC,
Melnikov, Schulze]

$2 \rightarrow 2$ pheno @ NNLO: the global picture

Very good / improved data-theory comparison

$2 \rightarrow 2$ pheno @ NNLO: the global picture

Very good / improved data-theory comparison

NNLO: what have we learned so far?

- Properly modeling the actual experimental setup is crucial (especially for cuts constraining QCD radiation)

Example: WW, 13 TeV : qq- vs gg-initiated sub-processes

- full inclusive [unobservable]: qq@NNLO +7\%, gg + 4\%
-WW fiducial region: qq@NNLO -2\%, gg +9\% (similar result for Higgs-cuts)

[higher order corrections to gg component: FC, Dowling, Melnikov, Röntsch, Tancredi (2016)]

NNLO: what have we learned so far?

Example: modeling Top decay

tt , approx $\mathrm{NNLO}_{\text {prod }}$ (carefully benchmarked against [Czakon et al]) $\times \mathrm{NNLO}_{\text {decay }}$
CMS setup, $e^{ \pm} \mu^{\mp}, e^{+} e^{-}, \mu^{+} \mu^{-}$channel [25], $2 b$-jets required (anti- k_{t} algorithm [66], $R=0.5$)

energy	fiducial volume	LO [pb]	NLO [pb]	NNLO [pb]	$\delta_{\text {dec. }}$	CMS [pb]
8 TeV	$p_{T}\left(l^{ \pm}\right)>20 \mathrm{GeV},\left\|\eta\left(l^{ \pm}\right)\right\|<2.4$,	$3.780_{-25.3 \%}^{+37.4 \%}$	$4.483_{-11.5 \%}^{+9.0 \%}$	$4.874_{-6.8 \%}^{+2.5 \%}$	-8.0%	$4.73_{-4.7 \%}^{+4.7 \%}$
	$p_{T}\left(J_{b}\right)>30 \mathrm{GeV},\left\|\eta\left(J_{b}\right)\right\|<2.4$					

t-channel single-top plus top-decay (NWA)
 [Berger, Gao, Yuan, Zhu (2016)]

- Small inclusive corrections
- LARGE CORRECTIONS in exclusive region

NNLO: what have we learned so far?

Is tension in $\mathrm{p}_{\mathrm{t} \text {, top }}$ partially due to reconstruction?

- shape difference, non very significant but persistent at different energies
- effect seems smaller for correlated lepton-observables...
- crucial for R3 to properly understand top p_{t} spectrum...

NNLO: what have we learned so far?

$\mathrm{H} \rightarrow \gamma \gamma$ in the fiducial region: very different picture for different cuts

ATLAS-like cuts

(asymmetric)

Symmetric cuts
[similar studies for diphoton final states:
Catani et al (2018)]

NNLO: what have we learned so far?

Extra parton dynamics play a significant role
Not always captured by parton showers. E.g.: VBF

- corrections in the fiducial region much larger than inclusive
- for some observables, PS goes in the opposite direction

Again on jet dynamics: single inclusive jet

-Inclusive jet spectrum: $\mu=p_{t, L}$ vs p_{t}

[Currie, Glover, Gehrmann, Gehrmann-de Ridder, Huss, Pires (2017)]
-Despite small scale variation, very large dependence on scale choice (hardest jet in the event vs individual jet). Non trivial jet dynamics

NNLO: open puzzles

$\bullet \mathrm{V}+\mathrm{j}$: unexpected disagreement even with high precision / clean data

NNLO: a few applications

NNLO: PDFs

Top Differential Distributions and PDFs

-Similar results from $\mathrm{Z} \mathrm{p} \mathrm{p}_{\mathrm{t}}$ di-jet

- Di-jet \rightarrow large- x gluon. Can disentangle different aspects (high pt: potential new physics! Forward region cleaned, but is f.o. good enough?)

Application of NNLO results: Н рт

[Bizon, Monni, Re, Rottoli, Torrielli (2017), similar results from Chen et al (2018)]

- Matching of NNLO H +J with N^{3} LL Higgs p_{T} resummation
- Significant reduction of perturbative uncertainties from NLO+NNLL to NNLO+NNLL, no large N3LL effect
- No breakdown of perturbation theory until very low scales (resummation effects: 25% at $\mathrm{p}_{\mathrm{T}}=15 \mathrm{GeV}, \sim 0 \%$ at $\mathrm{p}_{\mathrm{T}}=40 \mathrm{GeV}$)

Application of NNLO results: $Z \mathrm{p}_{\mathrm{t}}$

- Tiny uncertainties
- At face value, slight data/ theory tension. In this plot non significant, but systematically there over different rapidity/ invariant mass bins
- Underestimate uncertainty, PDFs, non perturbative, ...?

Nice "test case" for precision targets for HL/future colliders

Application: hunting elusive BSM signals
[Czakon, Mitov, Papucci, Ruderman, Weiler (2014)]
$\tilde{t} \rightarrow t+\chi_{1}^{0} / \tilde{G}, \quad m_{\tilde{t}} \sim m_{t} \gg m_{\chi_{1}^{0}, \tilde{G}}, \quad \sigma_{\tilde{t}} \approx 0.15 \cdot \sigma_{t}$
-Hunting for stealthy stop

- CMS di-lepton analysis: $\delta \sigma_{\exp } \sim 4.5 \%$
- NNLO SM prediction: $\delta \sigma_{\text {th }} \sim 4.5 \%$
- Significant discovery / exclusion power

NNLO: going forward

Back to the start...

$\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ corrections: two-loop (VV), one-loop+j (RV), tree $+\mathrm{jj}(R R)$

Going beyond what I have shown so Far

- loop amplitudes
-better subtraction schemes

Loop amplitudes: status

- Amplitude COMPLEXITY GROWS VERY FAST with the number of scales: invariants (~\# legs) and particle masses

$$
\begin{aligned}
F_{--}^{\mathrm{L}} & ++=-\left(x^{2}+y^{2}\right)\left[4 \mathrm{Li}_{4}(-x)+\frac{1}{48} Z_{+}^{4}\right. \\
& +(\tilde{Y}-3 \tilde{X}) \mathrm{Li}_{3}(-x)+\Xi \mathrm{Li}_{2}(-x) \\
& \left.+i \frac{\pi}{12} Z_{+}^{3}+i \frac{\pi^{3}}{2} X-\frac{\pi^{2}}{12} X^{2}-\frac{109}{720} \pi^{4}\right] \\
& +\frac{1}{2} x(1-3 y)\left[\operatorname{Li}_{3}(-x / y)-Z_{-} \mathrm{Li}_{2}(-x / y)\right. \\
& \left.-\zeta_{3}+\frac{1}{2} Y \tilde{Z}\right]+\frac{1}{8}\left(14(x-y)-\frac{8}{y}+\frac{9}{y^{2}}\right) \Xi \\
& +\frac{1}{16}(38 x y-13) \tilde{Z}-\frac{\pi^{2}}{12}-\frac{9}{4}\left(\frac{1}{y}+2 x\right) \tilde{X} \\
& +\frac{1}{4} x^{2}\left[Z_{-}^{3}+3 \tilde{Y} \tilde{Z}\right]+\frac{1}{4}+\{t \leftrightarrow u\},
\end{aligned}
$$

[Bern, De Freitas, Dixon [2002]
$\mathrm{gg} \rightarrow \mathrm{VV}: \sim 10 \mathrm{MB}$ expression

- Despite a lot of recent progress still pretty limited knowledge. State of the art:
- Analytically: 2 -> 2, external masses (pp$>\mathrm{VV}^{*}$) [FC, Henn, Melnikov, Smirnov, Smirnov (2014-15); Gehrmann, Manteuffel, Tancredi (2014-15)]
- Numerically: 2->2, internal / external masses (pp-> tt, pp $->\mathrm{HH}$) [Czakon;
Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]
- Lot of recent progress: towards 2->3
[Badger et al (2016-18)]; numerical unitarity [Abreu et al (2017-18)], many-scales integrals [Gehrmann, Henn, Lo Presti (2015); Papadopoulos, Tommasini, Wever (2016); Tancredi, Remiddi (2016); Weinzierl et al (2017); Bonciani et al (2016)]

Loop amplitudes: prospects

- For complicate amplitudes, at least a semi-numerical approach seems unavoidable to get the full result
$-2 \rightarrow 2$ processes: functions of 2 variables (s, scattering angle) + parameters (masses) \rightarrow natural to tabulate
- How can we deal with the multi-dimensional case?
- Can we systematically construct and merge approximations over the whole kinematic region?

Subtraction: status+challenges

Higher order: non trivial soft / collinear radiation patterns

Explosion in complexity: CPU hours
$2 \rightarrow 1$

$$
2 \rightarrow 2 \quad 2 \rightarrow 3
$$

NNLO
100
10 -106
out of reach
$\mathrm{N}^{3} \mathrm{LO}$
~10 ${ }^{7}$

- Problem of finding NNLO subtraction solved
- Problem of finding good subtraction far from over
- A lot of work, new ideas ([FC, Melnikov, Röntsh (2018); Magnea et al (2018); Herzog (2018), ...]

New ideas at work: nested soft-collinear subtraction

[FC, Melnikov, Röntsh, 2017-2018]
Insight from resummation \rightarrow simplify radiation patterns (color coherence)

- very good convergence, reduced run time
- would be interesting to stress-test
- in principle there for arbitrary processes [FC, Delto, Frellesvig, Melnikov (2018)], in practice no implementation yet

Beyond NNLO?

$\mathrm{N}^{3} \mathrm{LO}$ for simple processes

- We still do not master fully differential NNLO \rightarrow generic N3 LO out of the question
- Still, we can imagine having fully differential $\mathrm{N}^{3} \mathrm{LO}$ predictions in the near future for selected processes: DIS (\downarrow), Higgs, DY

- X+J@NNLO contains most of the X-N3LO information. Missing parts:
-3-loop purely virtual \rightarrow ~ trivial
- "'missing jet": non-trivial zero- p_{t} rapidity dependence. If this is known, can combine with $\mathrm{X}+\mathrm{jet}$ to obtain full result

$\mathrm{N}^{3} \mathrm{LO}$ for DIS

[Currie, Gehrmann, Glover, Huss, Niehues, Vogt (2018)]

- $\mathrm{F}_{\mathrm{i}} @ \mathrm{~N}^{3}$ LO known \rightarrow combine with ep $\rightarrow 2$ jet $@$ NNLO
- Computation of $\mathrm{N}^{4} \mathrm{LO}$ evolution also under the way

$\mathrm{N}^{3} \mathrm{LO}:$ Higgs

- Non-trivial missing information: Higgs rapidity
- Calculation under way, similar strategy of inclusive (soft expansion)

[Mistlberger et al (2018)]
- Much more complicated than inclusive, but getting there...

$\mathrm{N}^{3} \mathrm{LO}:$ Higgs

- Everything else is ready...

- Approximate N^{3} LO Higgs cross-section assuming ~trivial rapidity distribution

N3LO beyond Higgs

For DY, it may be more tricky: soft expansion for quarks does not work very well. Also: non trivial spin correlations

(a)

(b)

- More generic techniques may needed for DY
- Beyond DY: hic sunt leones [factorization violation, bound states and not integrable PDF integrals...]

NNLO: status and future

- A lot of theoretical progress in the recent past
- This lead to realistic $2 \rightarrow 2$ PHENOMENOLOGY AT NNLO
- Many interesting features
- Greatly reduced th. uncertainties (expected)
- Stability w.r.t. logarithmic corrections (not so obvious) \rightarrow fiducial region
- And a few surprises
- Non trivial jet dynamics (larger than naively expected corrections)
- Curious data / theory discrepancies
- A lot more to explore
- More pheno: e.g. jet dynamics @ NNLO vs mergedPS...
- $2 \rightarrow 2$ in "extreme" kinematics (boosted / off-shell H+j and pp $\rightarrow \mathrm{VV}$)
- better understanding of jet dynamics: $\mathrm{pp} \rightarrow 3 \mathrm{j}$. Also: $\alpha_{\mathrm{s},}$ maybe some extra handle to understand NP effects?
- Important backgrounds / precision tests: Hjj (VBF contamination, jet-bin correlations...), Vjj, ttj

NNLO: status and future

- This will require significant improvement on stat-of-the art
- Breaking the $2 \rightarrow 2$ barrier highly non trivial
-2-loop amplitudes
- more efficient IR subtraction
- even if the goal is \neq from NLO, at least some degree of automation - Beyond NNLO?
- Exclusive Higgs at N3LO
$\bullet N^{3}$ LO beyond the Higgs?

The LHC provides constant Motivation and Inspiration EXCITING TIMES AHEAD!

Thank you

very much for

 your attention!