

The status of the search for a nEDM and the new UCN sources

Andreas Knecht

Paul Scherrer Institut & Universität Zürich Currently at: ETH Zürich

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

The Baryon Asymmetry of the Universe

• **Observed:*** $n_B/n_{\gamma} = 6 \times 10^{-10}$

SM expectation:** n_B/n_γ ~ 10⁻¹⁸

Sakharov 1967: B-violation C, CP-violation thermal non-equilibrium JETP Lett: 5, 24 (1967)

WMAP data: Astrophys. J. Supp. **170**, 377 (2007) Riotto and Trodden: Ann. Rev. Nucl. Part. Sc. **49**, 35 (1999)

Electric Dipole Moment

Non-zero, permanent EDM violates both parity P and time reversal T

 \rightarrow Violates CP

→ Understand mechanism of CP violation

nEDM History

PAUL SCHERRER INSTITUT

Universität Zürich

PAUL SCHERRER INSTITUT

An EDM couples to an electric field as a MDM couples to a magnetic field:

$$h\nu = 2\mu_n B \pm 2d_n E$$

 Measure EDM from the difference of precession frequencies for parallel/antiparallel fields:

$$d_n = \frac{h\Delta\nu}{4E}$$

Ultracold Neutrons

oGravi oMaterial opolarized UCN 01.5 T Magnet

- Neutrons with kinetic energies of ~ 100 neV (~ 5 m/s)
- Interactions:
 - o Gravitational: V_g = 100 neV/m
 - Magnetic: $V_m = 60 \text{ neV/T}$
 - Strong: V_F up to 350 neV
 - \bigcirc Weak: n → p + e + v

PAUL SCHERRER INSTITUT

nEDM Apparatus

- Room temperature experiment
- Ramsey technique of separated oscillatory fields
- Mercury co-magnetometer to monitor magnetic field

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

Need for Neutrons!

Superthermal UCN Production

- ◎ Golub and Pendlebury, PLA 62, 337 (1977): superfluid ⁴He
- \odot Golub and Böning, ZPB **51**, 95 (1983): solid D₂

$$P_{UCN} = \Phi_{CN} R \tau_{UCN}$$

$$CN$$

$$I_{UCN}$$

	R [cm ⁻¹]	τ _{UCN} [s]	
D ₂	10 ⁻⁸	0.030.1	
⁴ He	13 x 10 ⁻⁹	101000	

Detailed balance: upscattering cross section = $exp(-\Delta E/kT) \times downscattering$

UCN sources

Existing:

0	ILL, France	liquid D ₂ , turbine	ρ ~ 10 UCN/cm³				
0	LANL, USA	solid D ₂	ρ ~ 10 UCN/cm³				
0	Mainz, Germany	solid D ₂	ρ ~ 1 UCN/cm³				
0	NCSU, USA	solid D ₂	ρ ~ 10 UCN/cm ³				
2010:							
0	PSI, Switzerland	solid D ₂	ρ ~ 1000 UCN/cm³				
≥2	≥2010:						
0	ILL, France	superfluid 4He	ρ ~ 1000 UCN/cm3				
22	2012:						
0	FRM-II, Germany	solid D_2	ρ ~ 3000 UCN/cm ³				
0	PNPI, Russia	superfluid ⁴ He	ρ ~ 10'000 UCN/cm ³				
22	2013:						
0	TRIUMF, Canada	superfluid ⁴ He	ρ ~ 50'000 UCN/cm ³				

UCN Source

The New, the Rare and the Beautiful, 6. - 8. January 2010, Zürich

PAUL SCHERRER INSTITUT

UCN Source

The New, the Rare and the Beautiful, 6. – 8. January 2010, Zürich

First Proton Pulse on Target December 15, 2009

- Signal distribution on oscilloscope monitoring fast neutrons
- 100 μA beam current / 5 ms pulse length

B.Lauss / L.Goeltl Dec.15, 2009

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

Current & Proposed nEDM Experiments

- CryoEDM experiment @ ILL (next slides, courtesy of P. Harris) Sussex – Rutherford – Oxford – ILL – Kure
- SNS EDM @ SNS (next slides, courtesy of B. Filippone)
 ASU Berkeley Brown BU Caltech Duke Indiana Kentucky LANL Maryland MIT NCSU ORNL HMI SFU Tenn. UIUC Miss.State Yale
- nEDM experiment @ PSI (next slides) PTB - LPC - JUC - HNI - JINR - FRAP - ECU - LPSC - BMZ - KUL - GUM - IKC - TUM - PSI -ETHZ
- nEDM experiment @ ILL/PNPI PNPI – ILL
 - → currently running at ILL, needs new UCN source for competitive result
- nEDM experiment @ TRIUMF KEK – TIT – Osaka – RCNP – Winnipeg
 - \rightarrow 2013, LOI/proposal for TRIUMF expected in 2010/2011

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

CryoEDM overview

Status & Plans

C.f. room-temp vacuum, liquid He offers:

- More neutrons N
- Higher electric field *E*
- Better polarisation α
- Longer NMR coherence time *T*

100-fold improvement in sensitivity

- Neutron production and detection in LHe works well.
- Commissioning underway key components shown to work (but need improvement)

 $\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$

- Cryogenics are old and have caused numerous setbacks
- B shielding not yet optimal, and electric field needs to increase; but we know how
- First results anticipated ~2011-2 at ~3x10⁻²⁷ ecm level
- 2012-13: expt due to move to 6x brighter beamline
- Various upgrades proposed for implementation at that time e.g. 4-cell Ramsey chamber, improved materials
- Anticipated ultimate sensitivity ~few 10⁻²⁸ ecm

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

New EDM Experiment @ SNS

(ASU - Berkeley - Brown - BU - Caltech - Duke - Indiana - Kentucky - LANL - Maryland - MIT - NCSU - ORNL - HMI - SFU - Tenn. -UIUC - Miss.State - Yale)

(AMO - HEP - NP - Low Temp expertise)

Superfluid He UCN converter with high E-field ~2 orders-of-magnitude improvement possible

Concept: Golub & Lamoreaux PHYSICS REPORTS 237,1,1994.

Status of SNS nEDM

- nEDM building at SNS recently completed
- Completing critical R&D
 High Voltage test at Low Temperature in LHe
- Project Design will be completed 2010
 - Cost and Schedule also determined in 2010
- Construction time ~ 5 years

Outline

Neutron Electric Dipole Moment

New UCN Sources

nEDM Experiments: CryoEDM Experiment @ ILL nEDM Experiment @ SNS nEDM Experiment @ PSI

nEDM Strategy

Phase I:

- Operate and improve Sussex-RAL-ILL apparatus at ILL
- R&D for n2EDM
- Move to PSI March 2009

Phase II:

- Operate Sussex-RAL-ILL apparatus at PSI (2009-2012)
- Sensitivity goal: 5x10⁻²⁷ ecm
- Construction and setup of n2EDM
- Phase III:
 - Operate n2EDM (2012-2015)
 - Sensitivity goal: 5x10⁻²⁸ ecm

Phase I: Sussex-RAL-ILL Apparatus at ILL

Phase II: Sussex-RAL-ILL Apparatus at PSI

Statistical Sensitivity

$$\sigma(d_n) = \frac{\hbar}{2\alpha ET\sqrt{N}}$$

- $\alpha = 0.75 \qquad \mathbf{\sigma}(d)$
- E = 12 kV/cm
- T = 150 s

 $\sigma(d_n) = 4 \times 10^{-25} e^{\text{cm}} / \text{cycle}_{400 \text{ s}}$ $= 3 \times 10^{-26} e^{\text{cm}} / \text{day}$ $= 3 \times 10^{-27} e^{\text{cm}} / \text{year}_{200 \text{ nights}}$

N = 350'000

Obtain same figures with E=10kV/cm, T=130s, 200s cycle

After 2 years, statistics only $d_n = 0$: $|d_n| < 4 \times 10^{-27} e^{\text{cm}}$ (95% C.L.)

Systematics

Effect		Shift (see Ref.) [10 ⁻²⁷ <i>e</i> cm]	σ (see Ref.) [10 ⁻²⁷ <i>e</i> cm]	σ (at PSI) [10 ⁻²⁷ <i>e</i> cm]
Door cavity dipole		-5.6	2.00	0.10
Other dipole fields		0.0	6.00	0.40
Quadrupole difference		-1.3	2.00	0.60
v × E translational		0.0	0.03	0.04
v×E rotational		0.0	1.00	0.10
Second-order v ×E		0.0	0.02	0.01
v_{Hg} light shift (geo phase)		3.5	0.80	0.40
v _{Hg} light shift (direct)		0.0	0.20	0.20
Uncompensated <i>B</i> drift		0.0	2.40	0.90
Hg atom EDM		-0.4	0.30	0.06
Elastic forces		0.0	0.40	0.40
Leakage currents	Aftor 2 vo	After 2 years, statistics & systematics		0.10
ac fields	$d = 0.$ $d = 5 \times 10^{-27} \text{ cm} (95\% \text{ C} \text{ L})$			0.01
Total $a_n = 0. a_n < 3 \times 10^{-26} e_{Cm} (5\sigma)$			1.37	
PRL 97. 131801 (2006)				

Conclusions

Several new UCN sources are being built worldwide for fundamental physics experiments

New sources will allow to push the statistical sensitivity in nEDM experiments by two orders of magnitude

Improved results of various nEDM experiments can be expected in the coming years

Backup

PSI UCN Source

PAUL SCHERRER INSTITUT Proton Accelerator Facility @ PSI I Universität Zürich

Storage Volume and Shutters

CN Energy Dependent UCN Production

nEDM Experiment

Strong CP Problem

CP violating term in the QCD Lagrangian (θ -term):

SUSY CP Problem

Larger CP violation in supersymmetric models than in the Standard Model

Limits on different electric dipole moments constrain SUSY phases already now

Why (so) small?

The Neutron EDM Collaboration

The New, the Rare and the Beautiful, 6. - 8. January 2010, Zürich

PAUL SCHERRER INSTITUT

Ramsey resonance

- Polarized neutrons in a homogeneous static field (*+z*direction, spin up).
- Linear oscillating field turning the spin in *xy*-plane.
- Free precession time (~100s) with μ_n and d_n coupling to static **B** and **E** field.
- Linear oscillating field turning the spin in *-z*-direction (spin down).

PAUL	SCHEF	RRER	INS	TITUT
		—	Ŧ	
				-

nEDM

The New, the Rare and the Beautiful, 6. - 8. January 2010, Zürich

Hg magnetometer

PAUL SCHERRER INSTITUT

The Neutron EDM Collaboration

M. Burghoff, S. Knappe-Grüneberg, A. Schnabel, L. Trahms

G. Ban, Th. Lefort, Y. Lemiere, O. Naviliat-Cuncic, E. Pierre¹, G. Quéméner, G. Rogel²

K. Bodek, St. Kistryn, J. Zejma

A. Kozela

- **N. Khomutov**
- P. Knowles, A.S. Pazgalev, A. Weis

P. Fierlinger, B. Franke¹, M. Horras¹, F. Kuchler, G. Pignol D. Rebrevend

G. Bison

K. Kirch¹, N.N.

S. Roccia, N. Severijns, N.N. G. Hampel, J.V. Kratz, **T. Lauer**, C. Plonka-Spehr, N. Wiehl, J. Zenner¹

W. Heil, A. Kraft, Yu. Sobolev³

I. Altarev, E. Gutsmiedl, S. Paul, R. Stoepler

Z. Chowdhuri, M. Daum, M. Fertl, R. Henneck, A. Knecht⁴, B. Lauss, A. Mtchedlishvili, G. Petzoldt, P. Schmidt-Wellenburg, G. Zsigmond

Grenoble

Physikalisch Technische Bundesanstalt, Berlin Laboratoire de Physique Corpusculaire, Caen Dubna Institute of Physics, Jagiellonian University, Cracow Henryk Niedwodniczanski Inst. Of Nucl. Physics, Cracow Joint Institute of Nuclear Reasearch, Dubna Département de physique, Université de Fribourg, Fribourg Excellence Cluster Universe, Garching Laboratoire de Physique Subatomique et de Cosmologie, Grenoble Berlin Biomagnetisches Zentrum, Jena Katholieke Universiteit, Leuven Inst. für Kernchemie, Johannes-Gutenberg-Universität, Mainz

Inst. für Physik, Johannes-Gutenberg-Universität, Mainz N Technische Universität, München

PAUL SCHERRER INSTITUT

anössische Technische Hochschule Züric

Paul Scherrer Institut, Villigen

Eidgenössische Technische Hochschule, Zürich

also at: ¹Paul Scherrer Institut, ²ILL Grenoble, ³PNPI Gatchina, ⁴University of Zürich

lena

- Development of a new insulating UCN storage chamber: deuterated PS coated PS
- Potential: 162 neV (Quartz: 95 neV)

- Addition of Cs magnetometers
- Magnetic field diagnostics, field stabilisation

PAUL SCHERRER INSTITU

R&D during Phase I

PAUL SCHERRER INSTITU

Universität Zürich

Phase III: n2EDM

- Double chamber system, vertical stack of cylindrical chambers
- Co-magnetometer (Hg, Xe?, He?)
- Cs magnetometer array (64, 128, ?)
- 2 large He-3 magnetometers with He-3 read-out by CsM
- B-field and gradient stabilization by CsM
- 5-layer mu-metal shield
- UCN polarized by SC polarizer
- UCN spin analysis above detector, eventually simultaneous analysis
- Flexible DAQ

PAUL SCHERRER INSTITU

The New, the Rare and the Beautiful, 6. - 8. January 2010, Zürich

Shutter Movement

PAUL SCHERRER INSTITUT

Universität Zürich

B-field Sensitivity

- Statistical sensitivity: $\sigma_{\rm B} = \frac{1}{\gamma_n 2\pi \alpha T \sqrt{N}}$
- Sussex (nEDM NIMA, 2000): α = 0.5, T = 130 s, N = 13'000
 → σ_B = 0.7 pT
- We: α = 0.3, T = 150 s, N = 5'000 (!)
 → σ_B = 1.7 pT or ~1.7 x 10⁻⁶
- ◎ From data: $< \sigma(f_n) > < f_n > ≈ 10^{-6}$ $< \sigma(f_{Hg}) > < f_{Hg} > ≈ 7 × 10^{-8} (~ 70 \text{ fT})$
- Normalising the neutron data with Hg reduces the deviations to the level of statistical fluctuations!
- The fluctuations seen are magnetic fluctuations, they are bigger the further away from the center

Cs Magnetometers

- Mechanical and optics for 25 sensors
- Prototype preamps work
- Ultimate sensitivity
 10 fT/sqrt(Hz)
- 240 cells made and tested

NEM histogram

Cs Magnetometers

The New, the Rare and the Beautiful, 6. - 8. January 2010, Zürich

Cs Magnetometers

Systematics

Geometric Phase

Quantum mechanical system \odot acquires additional phase due to geometrical properties of Vend Vstart parameter space a(C2 Classical analogon: \odot Transport of vectors along a sphere Vend a(C1) C1 C_2

Sources of magnetic inhomogeneities:

$$\vec{B}_{0xy} = -\partial B_{0z} \frac{\vec{r}}{2} \qquad \vec{B}_{\nu} = \frac{\vec{E} \times \vec{\nu}}{c^2}$$

- $\odot~$ UCN moves around the trap with speed ω_{r}
 - \rightarrow experiences oscillating fields
 - \rightarrow shift of resonant frequency (Ramsey-Bloch-Siegert shift):

$$\omega = \omega_0 + \frac{\left(\gamma \vec{B}_{xy}\right)^2}{2(\omega_0 - \omega_r)}$$

Sector Expanding the square:

$$\vec{B}_{xy}^2 = \left(\vec{B}_v + \vec{B}_{0xy}\right)^2 = \vec{B}_{0xy}^2 + 2\vec{B}_{0xy} \cdot \vec{B}_v + \vec{B}_v^2$$
$$\propto \mathbf{E}^0 \qquad \propto \mathbf{E}^1 \qquad \propto \mathbf{E}^2$$

• Averaging over possible paths for the two regimes $\omega_r < \omega_0$ (neutrons) and $\omega_r > \omega_0$ (mercury):

$$d_{fn} \propto \frac{\partial_z B_{0z}}{B_{0z}^2} v^2 \approx -10^{-27} e \mathrm{cm}$$

 $d_{fHg} \propto \partial_z B_{0z} R^2 \approx 10^{-26} e \mathrm{cm}$

- Mercury is used to correct for possible fluctuations of magnetic field (ratios of resonant frequencies)
 false Ha-EDM is imported onto the neutron measurement:
 - \rightarrow false Hg-EDM is imparted onto the neutron measurement:

$$d_{fHgn} = \frac{|\gamma_n|}{|\gamma_{Hg}|} d_{fHg} \approx 5 \times 10^{-26} \text{ ecm}$$

Dipole fields

Reduce dipole contaminations to < 0.5 x 10⁻¹⁴ Tm³/ $\mu_0 \rightarrow d_{false} < 5 x 10^{-28} ecm$

PAUL SCHERRER INSTITUT

1

Quadrupole fields

$$R_a = \left| \frac{\omega_n}{\omega_{Hg}} \frac{\gamma_{Hg}}{\gamma_n} \right| = 1 + \frac{q^2 R^2}{4B_0^2}$$

Quadrupole difference matters!

With transverse CsM, extract changes in B_{xy} down to qR ~ 100 pT $\rightarrow d_{false} < 6 \times 10^{-28} e$ cm

Universität Zürich

Uncompensated B-drift

Measure HV correlated gradients top-bottom with CsM

10 fT difference (6 x $10^{-26} e$ cm) will be detected in one day and suppressed by a factor ~70 by normalizing with Hg $\rightarrow d_{false} < 9 \times 10^{-28} e$ cm Universität Zürich

Neutron Lifetime

PDG: The most recent result, that of SEREBROV 05, is so far from other results that it makes no sense to include it in the average. It is up to workers in this field to resolve this issue. Until this major disagreement is understood our present average of 885.7 ± 0.8 s must be suspect.

PAUL SCHERRER INSTITUT

Universität Zürich