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Zürich, January 8, 2010

lavi
net



Before going to my talk on inclusive rareB−decays, I would like to mention that even
Daniel managed to publish a paper in PRD with0 citations:

The reason certainly is, that Daniel had a bad collaborator in this work!



Let me briefly tell why we worked on this alchemy-topics.

During my postdoc time in Zurich, around 1992, we formulateda covariant
constituent-quark model to describe the exclusive transitions

B → πeν B → ρeν .

TheB− meson was modelled as a state consisting ofb−quark and a massless spectatorq.

Rest-frame of theB−meson: q: 3-momentum~pq b: 3-momentum(−~pq)

We required that the energies ofb−quark and of the spec. add up to the mass of the
B−meson:

p +
√

m2
b + p2 = mB ; (p = |~pq|) .

This only works when we considerb−quark mass to be dependent onp:

mb(p) =
√

m2
B − 2mBp

The essential feature is that the four-momenta ofb−quark and of the spect. add up to the
four-momentum of theB, however at the cost of a momentum dependentb−quark mass.



For theB− meson state|ΨB〉 we used the representation

|ΨB〉 =
√

2mB

∫

d3pq

(2π)3
f(p)

√

2p0
b 2p0

q

1√
2Nc

[a+
↑ (pb, c)b

+
↓ (pq, c)−a+

↓ (pb, c)b
+
↑ (pq, c)] |0〉

where the wave-functionf(p) describes the momentum distribution of theb−quark. For

f(p) suitable Ans̈atze were chosen.

The quasi-free consituents can be boosted in a straightforward way, leading to a

description of a movingB−meson.

For the light mesons in the final state we used a picture of two parallel light (anti)quarks

sharing the four-momentum of the meson (φ = 6x(1 − x)).

This construction allowed us to calculate the decay form-factors and the branching ratios

in a manifestly covariant way.

When doing this work,Stan Brodskyvisited Zurich. He was unhappy with our concept of

variableb−quark mass:“This B−meson has no binding and falls apart”!



In order to learn how to describe excl.B−decays properly, Stan suggested to first discuss

transitions of electromagnetically bounded systems, as e.g.

(π+e−) → (µ+e−) + νµ or (Zµ−) → (Ze−) + νµ + ν̄e .

We referred to such processes as“atomic alchemy”, because ’atoms’ are transformed into

other atoms.

The description of these decays, however, soon became a science for itself.

I don’t want to go into this now, this easily would cost me 1/2 hour. But please read our

paper inPRD 52:4028,1995.

I am sure, on the 70th birthday of Daniel it will have≥ N citations(N is the number of

participants of this meeting).
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Introduction to incl. rare B-decays
By definition,rare decaysareloop-inducedin the SM.

The decayb → sγ is a specific example of such a decay.

b → sγ does not exist at tree level.

However,at the one-loop level, b → sγ does occur in SM:

typical diagram(e.m. penguin)

b sW



iiVib V �isi = u; 
; t
-tests SM at the QT level

-sensitive to certain CKM matrix elements

-sentistive to new physics (new particles in the loop)

The loop-induction naturally suppresses the BR. As we know to a value compatible with

the exp!!



Theoretical framework to calculate BR(B → Xsγ)

B → Xsγ is aninclusive decay.→ theoretically clean.

HQE:Γ[B → Xsγ] = Γ[b → sγ(g)] + corr. inΛQCD/mb.

- no linear corrections inΛQCD/mb when restricting to local operators

- Corr. start atO(Λ2
QCD/m2

b); they are related to the motion of theb-quark inside the

meson

There are, however, contributions which scale likeαs(mb)Λ/mb, induced by (non-local)

light-cone operators (Lee,Neubert,Paz 2006)

But let us first discuss the main contribution: the freeb-quark decayΓ[b → Xsγ].

Well-known: This partonic decay rate is significantly enhanced byQCD-effects.



When exchangingn gluons, there arelarge logs:

γ

W

b s

g

t

(αs

π

)n

logn m2
b

M2
M = mt, mW : leading logs (LL)

(αs

π

)n

logn−1 m2
b

M2
next-to-leading logs (NLL)

(αs

π

)n

logn−2 m2
b

M2
NNLL

To get a theoretical branching ratio is of similar precisionas the present measurements, on

has toresumLL, NLL and NNLL terms.

To achieve this resummation, one first constructs aneffective Hamiltonianand then

resums the logs usingRGE techniques.

The effective Ham. obtained byintegrating out heavy particles:In SM: top-quark,W , Z.



For b → sγ (b → sγg) one gets the following HamiltonianHeff :

H = −4GF√
2

VtbV
∗
ts

8
∑

i=1

Ci(µ)Oi(µ) .

The operators are:

O1 = (c̄LβγµbLα)(s̄LαγµcLβ) current-current operator

O2 = (c̄LαγµbLα)(s̄LβγµcLβ) current-current operator

O3 − O6 Gluonic penguin operators (also 4-Fermi operators)

O7 = e
16π2 mb(µ) (s̄σµνRb) Fµν phot. dipole

O8 = gs

16π2 mb(µ) (s̄ασµνTA
αβRbβ) Gµν,A gluonic dipole

Ci(µ) are determined through thematching procedure,i.e. one requires that certain

amplitudes in the full theory are id. to those in the effective theory.



Let’s look at the structure of the eff. Hamiltonian:

Heff ∼
∑

i

Ci(µ)Oi(µ)

Heff independent ofµ, while Ci andOi depend onµ:

→ RGE forCi(µ):

µ
d

dµ
Ci(µ) = γT

ij Cj(µ) ; γij : anomalous dim. matrix

Matching usually done at high scaleµW , i.e. µW ∼ O(mW ):

µW :
full theory and mat. el. of op. have same large log’s:

Corr. toCi(µW ) rel. small.

RGE

µb = O(mb): mat. el. of op. don’t have large log’s: They are contained in theCi(µb).



Calculation of BR(B → Xsγ) consists of three steps:

LL NLL NNLL

-matching atµ = µW : → Ci(µW ) α0
s α1

s α2
s

-RGE:→ Ci(µb) [with µb = O(mb)] α1
s α2

s α3
s

-calc. of matrix element〈Xsγ|Oi(µb)|b〉 α0
s α1

s α2
s



Comment on the NLL results
The calculation of the branching ratio at NLL order was already a complicated enterprise

where many groups were involved.Also Daniel was involved in the calc. of the two-loop

matrix elements associated withO1,2 [For this work we did get citations]

TheseNLL QCD calc.were completed in 1998.

Also certain classes of electro-weak corrections were calculated (Czarnecki, Marciano;

Neubert, Kagan; Baranowski, Misiak; Gambino, Haisch)

In 2001, Gambino and Misiakrealized that the NLL BR has a rather large theor.

uncertainty (∼ 11%) related to the renormalization scheme/scale which is usedfor mc.

It became clear that a NNLL calc. is necessary to remove/milder this scheme dependence.

Recently, the most important contributions at NNLL were finalized!!

Contributions which are expected to be less important numerically, are in progress now.



Ingredients for the NNLL calculation

Matching:needed toα2
s precision.

This means in particular a 3-loop calculation in the full theory to fix C7(µW ) andC8(µW )

[O(103) diagrams]:

W

b s

γ

→ done by Misiak and Steinhauser, hep-ph/0401041.

For other operatorsO(α2
s) means two-loop. Done some time ago.

→ matching complete for NNLLb → sγ!



Anomalous dimensions:needed up toα3
s precision.

• (O1 − O6)-sector

done by Gorbahn and Haisch, hep-ph/0411071.
O2

• (O7, O8)-sector

was finished in 2005 by

Gorbahn, Haisch and Misiak, hep-ph/0504194.

O7

• most difficult: mixingO2 → O7, O2 → O8:

about 22’000 4-loop diags!.

Done in 2006 byCzakon, Haisch and Misiak, hep-ph/0612329

O2

→ 8 × 8 anomalous dimension matrix complete for NNLL precision!



Matrix elements ofOi: needed up toα2
s

At orderα2
s the following subprocesses are involved:

b → sγ ; b → sγg ; b → sγgg ; b → sγqq̄

The decay width can be decomposed into various interferences of the form(Oi, Oj). Let’s
look at a few of them:

• (O2, O7)-interference is numerically very crucial.

Only the fermionic contributions are known exactly at NNLL order:PSfrag repla
ements
1a 1b 1
2a2b2
PSfrag repla
ements1a1b1
 2a 2b 2


O2

nf

The virtual corrections were calculated by

Bieri,Greub, Steinhauser, 2003for massless quarks in the bubble.

The bremsstahlung corrections in this approx. are also available exactly(Ligeti, Luke,
Manohar, Wise 1999.)

Later, also massive quarks in the bubble were taken into account (Boughezal, Czakon,
Schutzmeier 2007.)



The non-fermionic corrections are extremely difficult to calculate:

c

O2

O7

mc-dependence extremly hard to get.

Misiak and Steinhauserobtained a result for the unphys.

casemc ≫ mb, using HME techniques.

They then formulated an extrapolation procedure to the physical mc, which they tested at

the NLL levelhep-ph/0609241.

By comparing different versions of the extrapolation procedure, they conclude that their

result should be accurate within±3% (at level of BR).

At the moment exact calculations are in progress formc = 0 (Czakon et al.), which will

improve the extrapolation procedure.

I hope that even exact calc. will come for physicalmc and make the extrapolation obsolete!



• (O7, O7)-interference

The first paper on this was published byBlokland et al., hep-ph/0506055.

According to the optical theorem, the(O7, O7)-contribution to the decay width can be

obtained by taking the absorptive (imaginary) part ofb-quark self energy. Partial list of

such diagrams:
1

(k) (l) (m) (n) (o)

Blokland et al.calculated the imaginary parts of these diagrams by loop techniques.

We calculated independently the individual cuts of the(O7, O7) interference, i.e. the

subprocessesb → sγ, b → sγg, b → sγgg andb → sγqq̄ (Asatrian et al, 2006).

The results are identical.



• (O7, O8)-interference

So far, only the fermionic corrections with massless bubbles inserted in the

gluon-propagator entered the prediction for the NNLL BR.

Recently,T. Ewerth, hep-ph/0805.3911published a paper on the fermionic contributions,

including the mass effects in thec− andb−bubbles.

The full O(α2
s) corrections are not known yet. But they are in progress and only a few MI

have to be double-checked (Asatrian,Ewerth,Ferroglia,Greub).



NNLL results

Recently the known individual NNLL-pieces were combined. Aphenom. paper was

published inPRL 98:022002, 2007, (Misiak+16 authors!).

As expected, the large uncertainty due to the renorm. scaleµc (at whichmc is

renormalized), gets drastically reduced at NNLL.
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Also the dependence on the scaleµb gets drastically reduced at NNLL.
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At NNLL we obtain (PRL, 2007, (Misiak+16 authors!))

BR(B → Xsγ)|thEγ>1.6 GeV = (3.15 ± 0.23) · 10−4

BR(B → Xsγ)|exp
Eγ>1.6 GeV = (3.52±0.23±0.09)·10−4

HFAG, ArXiv:0808.1297

In the theory result various errors were added in quadrature, viz.

1. 3% higher orders (scale dependences)

2. 3% mc extrapolation

3. 3% parametric: fromαs(mZ), mc(mc), BRsl etc.

4. 5% due to a new class of non-perturbative corr. which scale likeαs
Λ

mb

Lee,Neubert,Paz Sept. 2006



Comment on the non-local power corrections

There are power corrections which scale likeαs
Λ

mb
. They arise for example in the

(O7, O8)-interference through the mechanism shown below (Lee,Neubert,Paz Sept. 2006)

O7-side: energetic photon is directly emitted from the operator

O8-side: a gluon is emitted from the operator. It goes into an energetic photon by emitting

two soft quarks.

The two ’vertical’ propagators have virtualities of ordermbΛ



This mechanism leads totri-local four-quark operatorslike

O1 =
∑

qeqh̄v(0)ΓRq(tn̄) q̄(sn̄)ΓRhv(0) tri-local operator.

hv: b-field in HQET;q, q̄: SCET fields located on the light-cone defined by the direction n̄

of the emitted photon.

If these 4-quark operators were local, their matrix elements would scale like(Λ/mb)
3. In

the present non-local situation, the two ’vertical’ propagators introduce two powers of the

soft scaleΛ in the denominator, leading to a scaling likeΛ/mb.

The matrix elements〈B|Oi|B〉 are very difficult to calc. Naive model estimates point to a

small red. of the total decay rate. The uncertainty (at the level of the decay rate) is

estimated to be ofO(∼ 5%). The authors (Lee,Neubert,Paz Sept. 2006) stress that it is

very difficult to really substantiate this number!



Comment on the photon energy cut-off effects

The NNLL result

BR(B → Xsγ)|Eγ>1.6 GeV = (3.15 ± 0.23) · 10−4

given above was derived in fixed-order perturbation theory.

In 2004Neubertpointed out that thephoton energy cutE0 induces an additional scale∆

∆ = mb − 2E0 twice the width of the observed energy window

Numerically,∆ ≈ 1.4 GeV (forE0 = 1.6 GeV).

Accounting for the photon-energy cut properly, requires todisentangle contributions

associated with thehard-scaleµh ∼ mb, thesoft scaleµ0 ∼ ∆ and theintermediate scale

µi ∼
√

∆mb, set by the typical invariant mass of the hadronic final state.

In the present application∆ ∼ 1.4 GeV can be treated as a perturbative scale, allowing to

construct a multiple scale Operator Product Expansion (MSOPE).



In 2006, Becher and Neubertused this framework toresum those leading and

next-to-leading logsof δ ≡ ∆/mb which arenot power-suppressed(in δ).

Power-suppressed terms on the other hand were retained in fixed order perturbation theory

[O(α2
s)] (resummation of power-suppressed log’s not yet available)

Combining this calculation with our fixed order results, they got a BR which somewhat

smaller (but it lies in the error bars of our result):

BR(B → Xsγ)|Eγ>1.6 GeV = (2.98 ± 0.26) · 10−4 Becher-Neubert 2006

Note: Misiak(arXiv:0808.3134)pointed out that only resumming the non

power-suppressedδ-logs is misleading, because these terms are not really verydominant

numerically. Therefore, before the resummation of the power-suppressed terms can also

done, the fixed order result is probably more reliable.



Summary on B → Xsγ

At NLL order the BR forB → Xsγ has a large uncertainty related to the def. ofmc.

Recently a first NNLL estimate of this BR was published, wherethis uncertainty gets

drastically reduced.

The matching calc. for the Wilson coefficents are complete atNNLL.

Also the anomalous dimensions are completely known.

There are missing matrix elements, e.g the(O7, O8) and(O8, O8) interferences.

The three-loop results for the matrix elements〈sγ|O2|b〉 for mc = 0 are awaited. They are

expected to improve the extrapolation inmc.

I would like to thank Daniel for all the wonderful collaborations we had in the last 19

years!!!

Äs het uhuere gf̈agt!



b → sγ in type-II 2HDM [the one realized in MSSM]

A second Higgs-doublet is added to the SM. As a consequence, there are3 neutral
Higgses,h0, H0, A0 and2 charged Higgses,H±.

The two doublets pick up no-zero vevs:v1 andv2.

In the type-II model, the quark masses are as follows:

mdown ∝ v1 ; mup ∝ v2 .

As in the SM,flavor-changing neutral currents are absent at tree-level.

There are, however, additional contr. tob → sγ due to charged Higgs (H−) exchange:H�



ii

+ QCD corrections

In the type-II 2HDM the operator basis is the same as in the SM.



→ Therefore, the additional contr. only modify Wilson coeffs. at the matching scale.

The new contr. contributions are only known to NLL precision(Borzumati, Greub 1998;

Giudice et al. 1998)

New contr. characterized by 2 parameters:mH− , tanβ = v2/v1.

mH− ≥ 295 GeV @ 95% CL (tanβ → ∞) most stringent bound!!

Stays basically unchanged fortanβ > 2. Fortanβ < 2, BR and bound increase (PRL,

2007, (Misiak+16 authors!)).
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RecentlyMisiak, arXiv:0808.3134pointed out that this “partial resummation” is

unreliable.

To illustrate this, consider the(O7, O7) contribution toF (E0) in perturbation theory:

[F = fraction of events which passes the photon energy cut]

F77(E0) = 1 +
αs

π
φ(1)(δ) +

α2
s

π2
φ(2)(δ) + . . .

Split eachφ(k) into two parts:

φ(k) = φ
(k)
L + φ

(k)
N

φ
(k)
L is a polynomial inlog(δ)

φ
(k)
N contains powers ofδ (vanishing at the endpoint)

Concretely, forφ(1) the splitting reads:
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φ
(1)
L (δ) = −2

3
ln2 δ − 7

3
ln δ − 31

9

φ
(1)
N (δ) =

10

3
δ+

1

3
δ2−2

9
δ3+

1

3
δ(δ−4) ln δ

Only at very large values ofE0 φ
(1)
L dominates.

However, at the relevantE0 = 1.6 GeV large cancellations betweenφ(1)
L andφ

(1)
N !!

Same situation forφ(2)
L andφ

(2)
N , which are expl. known.

General arguments imply the same situation for all the otherφ(k).

=⇒ When resumming the leading power pieces and leaving the power-suppressed pieces
unresummed atO(α2

s)-level, the necessary cancellations do not happen at theO(α3
s)-level.

As a consequence, theO(α3
s)-terms get highly overestimated.

Would be nice if one could resum logs in power-suppressed contributions as well.

Until this can be done, thefixed order result for the BR seems more reliable.



Comment on the normalization factor C

In the result above, the branching ratio was written as

BR(B̄ → Xsγ)Eγ>E0
= BR(B̄ → Xceν̄)exp

∣

∣

∣

∣

V∗
tsVtb

Vcb

∣

∣

∣

∣

2
6αem

πC
[P(E0) + N(E0)] .

The perturbative partP (E0) is

Γ(b → Xsγ)Eγ>E0

|Vcb/Vub|2 Γ(b → Xueν̄)
=

∣

∣

∣

∣

V ∗
tsVtb

Vcb

∣

∣

∣

∣

2
6αem

π
P (E0) .

C is the so-called semileptonic phase-space factor:

C =

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

2
Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)

The expression forC is a function ofmc/mb and of non-perturbative OPE-parameters.

All the occuring quantities inC are determined in a single global fit from the measured
decay spectra ofB → Xceν̄.



ForC one obtains

C =







0.582 ± 0.016 C. Bauer et al., hep-ph/0408002 1S scheme

0.546+0.023
−0.033 P. Gambino and P. Giordano, arXiv:0805.0271kinetic scheme

andmc (after converting it to the MS-bar scheme)

mc(mc) =







1.224 ± 0.057 1S scheme

1.267 ± 0.056 kinetic scheme

The differences cancel to some extent in the radiative BR, leading to

BR(B̄ → Xsγ)NNLL
Eγ>1.6GeV =































(3.15 ± 0.23) × 10−4 , using1S schemehep-ph/0609232

(3.25 ± 0.24) × 10−4 ,

following the kin. scheme analysis of

Gambino,Giordano,

see alsoMisiak, arXiv:0808.3134


