

Status and first Results of the MEG Experiment

Jeanine Adam on behalf of the MEG Collaboration

The New, the Rare and the Beautiful 7th January 2010 / University of Zurich

MEG Detector

Data Taking

- > Goal
- Theory
- MEG Experiment

Goal

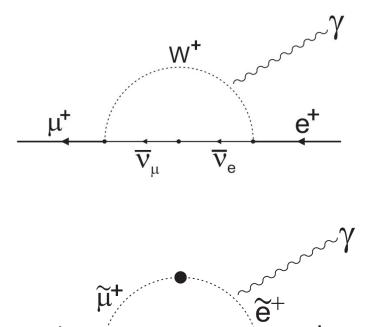
Search for the lepton flavor violating decay

$$\mu^+ \to e^+ \gamma$$

- The goal is to reach a sensitivity of BR $(\mu^+ \rightarrow e^+ \gamma) \sim 10^{-13}$
- Measured upper limits reached by other experiments:

1

Experiment	Year	Upper Limit
TRIUMF	1977	$< 3.6 \cdot 10^{-9}$
SIN	1980	$< 1.0 \cdot 10^{-9}$
LANL	1982	$< 1.7 \cdot 10^{-10}$
Crystal Box	1988	$< 4.9 \cdot 10^{-11}$
MEGA	1999	$< 1.2 \cdot 10^{-11}$


E I III Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction

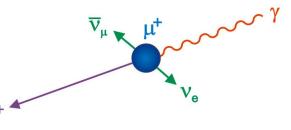
- Goal
- Theory
- MEG Experiment

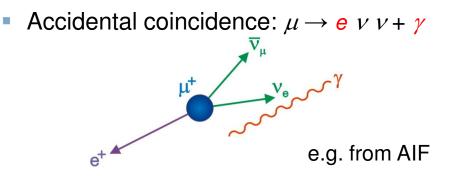
Theory

- Standard Model (SM) and v Oscillation:
 - MEG decay induced by neutrino oscillations with an estimated branching ratio of < 10⁻⁴⁰ (small neutrino masses)
 - Not verifiable by experimental methods!
- Supersymmetry:
 - Supersymmetric theories predict branching ratios of ~10⁻¹⁴ – 10⁻¹²
 - Just below the current experimental limit (1.2 × 10⁻¹¹)!

 $\widetilde{\chi}^{0}$

> An observation of $\ \mu^+
ightarrow e^+ \gamma \,$ will reveal new physics beyond the SM!


MEG Detector


Data Taking

- Goal
- > Theory
- MEG Experiment

Signature and Background

- Signature of a $\mu^+ \rightarrow e^+ \gamma$ event (decay at rest):
 - Emitted back-to-back
 - Each particle carries an energy equal to half of the muon mass (52.8 MeV)
 - Coincident in time
- Background
 - Radiative muon decay: $\mu \rightarrow e \gamma v v$

Precise measurements of position, energy and timing both for photon and positron are necessary!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction

MEG Detector


Data Taking

- Goal
- Theory
- > MEG Experiment

MEG Experiment

- International collaboration of ~80 physicists
- MEG is located at the Paul Scherrer Institute (PSI):
 - 590 MeV proton ring cyclotron facility
 - 2.2 mA proton current
 - π E5 beam channel: Surface μ^+ of 28 MeV/c
 - Continuous μ^+ beam

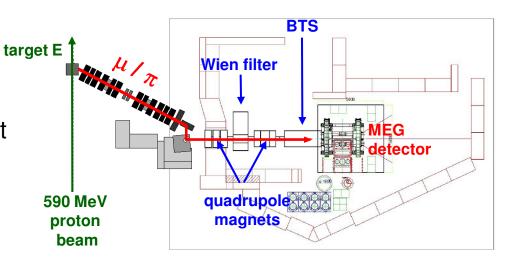
MEG Detector

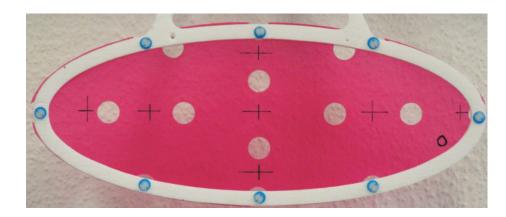
Data Taking

- Beam and Target
- Photon Detector
- Positron Spectrometer

MEG Detector

- **Photon:** Liquid xenon scintillation detector (position, timing, energy)
- **Positron:** COBRA positron spectrometer (position, timing, energy)


MEG Detector

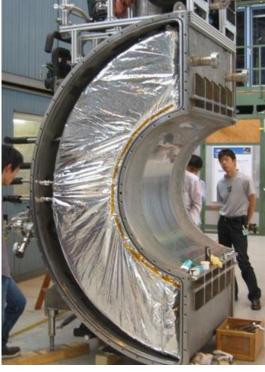

Data Taking

- > Beam and Target
- Photon Detector
- Positron Spectrometer

Beam and Target

- Beam
 - πE5 beam channel
 - Wien filter (μ^+ / e^+ separation)
 - Superconducting beam transport solenoid (BTS) with degrader
 - Stopping rate of 3 × 10 $^7 \mu^+$ /sec
- Target
 - 205 µm thick polyethylene foil clamped between a ROHACELL frame
 - Slanted angle of 20.5°
 - Holes (r=5mm) to check vertex reconstruction

MEG Detector

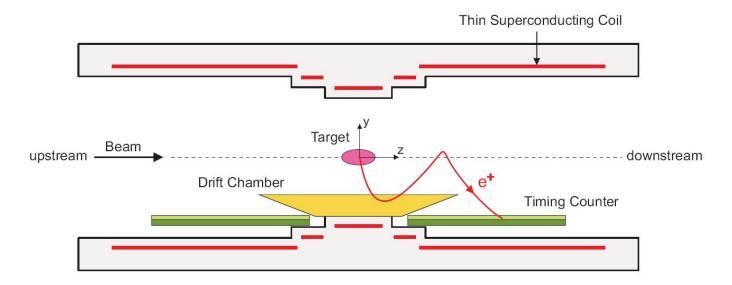

- Data Taking **Beam and Target**
- **Photon Detector**
- **Positron Spectrometer**

Photon Detector

- Photons are detected with the world's largest liquid xenon detector
- Filled with 900 liter of LXe (T=161-165 K)
- Scintillation light is picked up by 846 PMTs surrounding the detector
- High purity at sub-ppm level to avoid scintillation light absorption due to impurities (water, oxygen)

8

MEG Detector


Data Taking

- Beam and Target
- Photon Detector
- Positron Spectrometer

Positron Spectrometer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- The MEG positron spectrometer consists of a specially designed superconducting magnet COBRA, a drift chamber system and timing counters
- The spectrometer provide momentum, track and timing information about the positron

MEG Detector

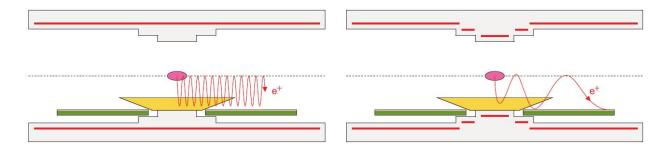
Data Taking

- Beam and Target
- Photon Detector
- Positron Spectrometer

Positron Spectrometer: COBRA

- COBRA is composed of a superconducting main magnet and two normal conducting compensation coils:
 - Main magnet: Composed of 5 superconducting coils with different radii
 → gradient magnetic field (B = 0.49 - 1.27 Tesla)
 - Compensation Coils: Reduce magnetic field around the photon detector

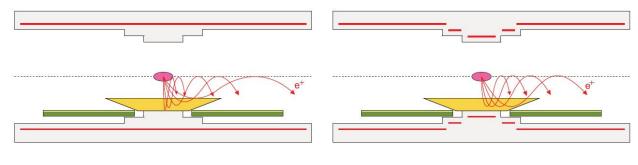
MEG Detector


Data Taking

- Beam and Target
- Photon Detector
- Positron Spectrometer

Positron Spectrometer: COBRA Advantages

Positrons emitted close to 90°


Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

(a) Normal Uniform Solenoid

(b) COBRA Magnet

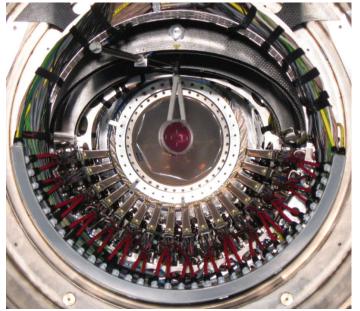
COnstant Bending RAdius

(a) Normal Uniform Solenoid

(b) COBRA Magnet

MEG Detector

Data Taking


- Beam and Target
- Photon Detector
- Positron Spectrometer

Positron Spectrometer: Drift Chamber System

• MEG drift chamber system:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- 16 modules aligned radially to the beam axis
- Each module consists of two wire planes shifted against each other
- Low-material construction:
 - Cathodes consist of 12.5 µm thick Kapton foils with 250 nm aluminium deposition
 - Open frame construction
 - Operated with a He:C₂H₆ (50:50) gas mixture

MEG Detector

Data Taking

- Beam and Target
- Photon Detector
- Positron Spectrometer

Positron Spectrometer: Timing Counter

- The MEG timing counter consists of two scintillator timing counter arrays placed at each end of the spectrometer each with a 2-layer construction:
- Phi-Counter:
 - Plastic scintillator bars along beam axis
 - Read out by PMTs at both sides
 - Positron timing measurement
- Z-Counter:
 - Scintillation fibers
 - Read out by APDs
 - Additional trigger information

scintillating fibers with APDs

scintillation bars with PMTs

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Data Taking

- Run 2008
- Results 2008
- Run 2009

Data Taking

- Commissioning run 2007:
 - All detector components assembled
 - Calibrations, trigger tuning
 - Test physics run (1 2 days)
- Run 2008:
 - Shutdown period: Solve problems appeared during 2007
 - May Aug 2008: Calibrations
 - Sep Dec 2008: Physics data taking (~ 3 months)
- Remark:
 - PSI accelerator shutdown from Christmas to mid of April \rightarrow no beam!
 - Another experiment is located in the $\pi E5$ area \rightarrow beam time is split

MEG Detector

Data Taking

- Run 2008
- > Results 2008
 - Run 2009

MEG Detector Resolutions in 2008

- Positron Energy:
 - Resolution function: triple Gaussian (core + 2 tail components)
 - Core: 374 keV (60%)
 Tails: 1.06 MeV (33%) / 2.00 MeV (7%)
- Photon Energy:
 - Asymmetric with low-energy tail
 - $\Delta E/E = (5.8 \pm 0.35)$ % FWHM with a right tail of $\sigma_R = (2.0 \pm 0.15)$ %
- Positron Photon Timing:
 - $\sigma_{te\gamma} = (152 \pm 16) \text{ ps}$
- Positron Photon Angles:
 - $\sigma_{\theta e \gamma} \sim 21 \text{ mrad}$
 - $\sigma_{\phi e \gamma} \sim 14 \text{ mrad}$

MEG Detector

tor Data Taking

- Run 2008
- Results 2008
 - Run 2009

Blind Box & Likelihood Analysis

- Pre-Selection Box:
 - Data reduction for analysis
- Blind Box:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Written to separate data-stream
- Not used to study background and optimize analysis
- Analysis Box:
 - Maximum likelihood analysis based on Feldmann – Cousins approach

Analysis Box Blind Box Pre-Selection Box 60 25 [MeV] Mean x Mean y 58 RMS x RMS y 56 20 54 52 15 50 48 10 46 44 5 42 40 18 20 22 24 26 28 30 32 34 36 T_γ - Te [nsec]

The preliminary result from the first 3 months startup period of MEG 2008:

BR
$$(\mu^+ \to e^+ \gamma) \le 3.0 \times 10^{-11}$$
 (90% C.L.)

Source: arXiv:0908.2594v1 [hep-ex] "A limit for the $\mu \rightarrow e\gamma$ decay from the MEG experiment"

Run 2009

- Jan Aug 2009:
- Hardware improvements

Introduction

New printed circuit board (PCB) for the drift chambers
 → DC high voltage problem solved

MEG Detector

- Improvement of the LXe purification system
 → higher light yield
- Installation of DRS4 chip
 → ghost pulse problem solved, no/reduced temp. dep.
- September 2009: Detector assembling
- October 2009: Calibrations
- Nov Dec 2009: Physics data taking (~ 2 months)
- Run 2009 stopped at 22 December 2009

- Run 2008
- Results 2008
- > Run 2009

MEG Detector

Data Taking

- Run 2008
- Results 2008
- Run 2009

Results 2009

The preliminary result from MEG run 2009:

coming soon...

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Summary and Prospects

- The MEG experiment is searching for the LFV decay $\mu^+ \to e^+ \gamma$ aiming a sensitivity of ~10 $^{\text{-13}}$
- Physics data production started in Sep 2008 (physics runs in 2008/2009)
- Data taken during the first startup period (3 months) of the MEG experiment in 2008 yielded an upper limit on the branching ratio of

BR
$$(\mu^+ \to e^+ \gamma) \le 3.0 \times 10^{-11}$$
 (90% C.L.)

- MEG time schedule:
 - Hardware improvements (Jan April 2010)
 - Assembling of all detector components / calibrations (May 2010)
 - Take physics data (June Dec 2010, 2011)
- MEG is expected to reach a sensitivity of ~10⁻¹³ in a few years