Recent results from B-factories

Overview of B-physics topics
New XYZ states
CKM matrix and φ₃/γ angle
ADS analysis
GLW analysis
Dalitz three-body decay analysis
Summary

Tagir AUSHEV EPF Lausanne

University of Zurich 6th - 8th January, 2010

B-physics topics

- There are many interesting results recently published by B-factories:
 - CP violation measurements from Belle and BaBar
 - Charm, charmonium, baryon spectroscopes
 - Rare and radiative decays
 - Tau physics
 - B_s mixing
 - Y(5S) studies
 - ...
- Due to limited time only two topics will be presented in this talk:
 - The most recent results for new XYZ states
 - CKM angle γ measurements

Observation of X(3872)

Many new states are recently observed by Belle/BaBar/CDF: X(3872), X(3940), Y(3940), X(4160), Y(4008), Y(4260), Y(4350), Y(4660), ...

All the story was started from the observation of X(3872):

X(3872) mass measurements

- Recently CDF published most precise measurement of X(3872) mass;
- Together with CLEO's update on the D⁰ mass gives hint on the X(3872) mass to be below the D⁰D^{*0} threshold

Note that the current mass is below the DD* threshold

Charged and neutral partners of X(3872)

DD^{*} threshold enhancement in $B \rightarrow KDD^*$

PRL 97, 162002 (2006)

PRD 77, 011102 (2008)

Both saw higher mass & BR(DD*) \approx 10x BR($\pi^+\pi^-J/\psi$)

	Mass, MeV	Width, MeV	B ⁺ BR x 10 ⁴
Belle	3875.4±0.7 ^{+1.2} -2.0		1.25±0.31±0.30
BaBar	3875.1 ^{+0.7} -0.5±0.5	3.0 ^{+1.9} -1.4±0.9	1.67±0.36±0.47

$B \rightarrow X(3872) \text{ K}; X(3872) \rightarrow D^{*0}D^{0}; D^{*0} \rightarrow D^{0}(\gamma, \pi^{0})$

BR(B→X(3872)($D^{*0}D^{0}$)K) = (0.73±0.17±0.13)×10⁻⁴ BR(B→Y(3940)($D^{*0}D^{0}$)K) < 0.67 × 10⁻⁴ @ 90% C.L.

Y(4140)→J/ψ φ

CDF observed new charmonium-like particle

CDF, PRL 102, 242002 (2009)

Searches at Belle

XYZ Summary

- More and more new states since 2003 observed by Belle, BaBar, CDF, ...
- **Recent updates** on XYZ resonances
 - X(3872) : Mass splitting is not found in decays from B mesons
 - Updated analysis for X(3872) \rightarrow D^{*0}D⁰ has been submitted to PRD
- Very New Topics:
 - − CDF's found new particle Y(4140) \rightarrow J/ $\psi \varphi$
 - It is not seen by Belle
 - Instead new structure seen by Belle at a bit higher mass in $J/\psi \varphi$

CKM matrix & ϕ_3/γ

Constraints on CKM parameters

Methods of ϕ_3/γ measurement

- Based on B \rightarrow DK decay with D⁰- $\overline{D^0}$ interference:
 - − GLW (CP eigenstates: $D^0 \rightarrow \pi\pi$, KK, K_sφ, K_sω)
 - ADS (CF and DCS states: $D^0 \rightarrow K\pi$, $K\pi\pi^0$)
 - − Dalitz (multibody states: $D^0 \rightarrow K_s \pi \pi$, $K_s KK$, $\pi \pi \pi^0$)
- Based on B⁰ decays (measurement of $2\phi_1 + \phi_3$)
 - $-B^0 \rightarrow D^{(*)} \pi^+$, Dp full rec.
 - $B^0 \rightarrow D^* \pi^+$ partial rec.
- Results for the first item will be presented

ADS method: $B^- \rightarrow DK^-$ with $D \rightarrow K^+\pi^-$

D. Atwood, I. Dunietz and A. Soni, PRL **78, 3357 (1997)**

Enhance magnitude of CP violation by using Doubly Cabibbo-suppressed D decays

ADS method: $B^0 \rightarrow D^0 K^{*0}$

GLW method

M. Gronau, D. London, D. Wyler, PLB 253, 483 (1991); PLB 265, 172 (1991)

CP eigenstate of D-meson is used (D_{CP}) CP-even: $D_1 \rightarrow K^+K^-$, $\pi^+\pi^-$, CP-odd: $D_2 \rightarrow K_s \pi^0$, $K_s \omega$, $K_s \varphi$, $K_s \eta$, ...

Sensitivity depends on hadronic parameters

 $r_B = |A(b \rightarrow u)| / |A(b \rightarrow c)|$ and $\delta = arg(A(b \rightarrow u)/A(b \rightarrow c))$

Alternative set of variables:
$$x_{\pm} = r_B \cos(\delta \pm \varphi_3) = \frac{R_1(1 \mp A_1) - R_2(1 \mp A_2)}{4}$$
 $r_B^2 = \frac{R_1 + R_2 - 2}{2}$

Does not provide direct measurement of ϕ_3/γ , but helps in combination with other methods Sensitivity depends on strong phase (δ =0 or 180 give no sensitivity)

8 January, 2010

GLW: BaBar, Belle & CDF results

	R _{CP+}	A _{CP+}	R _{CP-}	A _{CP-}	x ₊	x _	r ²
BaBar	1.06±0.10±0.05	+0.27±0.09±0.04	1.03±0.10±0.05	-0.09±0.09±0.02	-0.09±0.05±0.02	+0.10±0.05±0.03	+0.05±0.07±0.03
Belle	1.13±0.16±0.05	+0.06±0.14±0.05	1.17±0.14±0.14	-0.12±0.14±0.05	-0.06±0.08±0.05	+0.04±0.08±0.04	+0.15±0.11±0.08
CDF	1.30±0.24±0.12	+0.39±0.17±0.04	-	-			

Belle: 275M BB pairs [PRD 73, 051106 (2006)]

 ϕ_3 can be extracted using input value of r_B from Dalitz analysis or using $B^+ \rightarrow D^{*0} K^+$ with both $D^{*0} \rightarrow D^0 \pi^0$ and $D^0 \gamma$

Dalitz analysis: three-body decays

A.Giri, Yu.Grossman, A.Soffer, J.Zupan, PRD 68, 054018 (2003) A.Bondar, Proc. of Belle Dalitz analisis meeting, 24-26 Sep 2002

 $|D^0\rangle + re^{i\theta}|\overline{D}^0\rangle$ Using 3-body final state, identical for D⁰ and anti-D⁰: K_S $\pi^+\pi^-$

Dalitz distribution density:

$$dp(m_{K_S\pi^+}^2, m_{K_S\pi^-}^2) \sim |f_D|^2 dm_{K_S\pi^+}^2 dm_{K_S\pi^-}^2$$

$$\left|f_{B}(m_{K_{S}\pi^{+}}^{2},m_{K_{S}\pi^{-}}^{2})\right|^{2}$$

(Assuming CP-conservation in D⁰ decays)

If $f_B(m_{K_S\pi^+}^2, m_{K_S\pi^-}^2)$ is known, parameters $(\phi_3/\gamma, r_B, \delta)$ are obtained from the fit to Dalitz distributions of $D \rightarrow K_S \pi^+ \pi^-$ from $B^{\pm} \rightarrow DK^{\pm}$ decays.

=

Need to know a complex form of the D⁰ decay amplitude, but only $|f_D|^2$ is obtained from D^{*} \rightarrow D π : Need to use model description, model uncertainty as a result.

$D^0 \rightarrow K_s \pi^+ \pi^-$ and $K_s K^+ K^-$ amplitudes

Amplitudes extracted from $D^* \rightarrow D^0 \pi^+$ produced in continuum (e⁺e⁻ \rightarrow cc)

$$\begin{split} & K^*(892)^{\pm}, \, K^*_0(1430)^{\pm}, \, K^*_2(1430)^{\pm}, \\ & K^*(1680)^{\pm}, \, \rho(770), \, \omega(782), \, f_2(1270), \end{split}$$

 $a_0(980)^0$, $\phi(1020)$, $f_0(1370)$, $f_2(1270)$, $a_0(1450)^0$, $a_0(980)^{\pm}$, $a_0(1450)^{\pm}$

S-wave: K-matrix (BaBar) Scalar resonances σ , f_0 , K_0^* (Belle) CLEO data can provide model independent Dalitz

Dalitz: results

Dalitz: Summary

Summary

- Many results are provided by B-factories in last year:
 - BaBar GLW, Belle ADS
 - Belle Dalitz update with $D^0 \rightarrow K_S \pi^+ \pi^-$
 - BaBar Dalitz update with $D^0 \rightarrow K_S \pi^+ \pi^-$ and new $D^0 \rightarrow K_S K^+ K^-$
- Good agreement between different measurements, both in r_{B} and $\varphi_{3}/\gamma:$
 - BaBar: $\gamma = (76 \pm 22 \pm 5 \pm 5)^{\circ}$
 - Belle: $\phi_3 = (76^{+12}_{-13} \pm 4 \pm 9)^\circ$
- Each method has his advantages/disadvantages
 - Combined result from all methods will give the best measurement

Backup

Dalitz: signal selection (Belle)

Belle collaboration, 657M BB pairs [arXiv: 0803:3375]

756 events, 29% background ($B \rightarrow DK$). 149 events, 20% background ($B \rightarrow D^*K, D^* \rightarrow D\pi^0$). In "clean" signal region ($lcos\theta_{thr} l < 0.8$, T > -0.7)

[preliminary]

Dalitz: signal selection (BaBar)

7 modes used: $B \rightarrow DK$, $B \rightarrow D^*K$ with $D^* \rightarrow D\pi^0$ and $D\gamma$, $B \rightarrow DK^*$

 $D^0 \rightarrow K_c \pi^+ \pi^-$ and $K_c K^+ K^-$ (except for $B \rightarrow DK^*$) $B^{\pm} \rightarrow DK^{\pm}$ $B^{\pm} \rightarrow [D\pi^0]_{D^*} K^{\pm}$ $B^{\pm} \rightarrow [D\gamma]_{D^*} K^{\pm}$ $B^{\pm} \rightarrow D[K_S \pi^{\pm}]_{\kappa^*}$ D⁰→K_sπ⁺π 100 133±15 ev 60 129±16 ev 118±18 ev 100 600±31 ev 32 52 5.25 5.2 5.25 5.25 5.2 5.25 m_{pe} (GeV/c²) m_{cs} (GeV/c²) m_{es} (GeV/c²) m_{as} (GeV/c²) D⁰→K_SK+K 15 32±7 ev 21±7 ev 112±13 ev TM & ONelvana 385M BB 32 5.2 5.25 5.25 5.25 m_{cs} (GeV/c²) m_{ex} (GeV/c²)

Tagir Aushev, Workshop in Zurich

m_{re} (GeV/c²)

PRD 78, 034023 (2008)

Belle & BaBar B-factories

B meson reconstruction

Y(4S) decays to pair of B-mesons, so in CMS energy of B is known:

$$E_B = E_{CM} / 2$$

It is used to select B candidates using variables:

$$\Delta E = \sum E_i - (E_{CM} / 2)$$

•B-meson "beam-constrained mass" M_{bc} (Belle) or energy substituted mass" M_{ES} (BaBar):

$$M_{bc} = \sqrt{(E_{CM}/2)^2 - (\sum p_i)^2}$$

Methods of ϕ_3/γ measurement

- Based on B→DK. Different D⁰ modes can be used:
 - GLW (CP eigenstates: $D^0 \rightarrow \pi\pi$, KK, K φ , K ω) Belle: 275M BB pairs ($B \rightarrow D_{CP}K$, $B \rightarrow D_{CP}^*K$: PRD 73 051106 (2006)) BaBar: 382M BB pairs ($B \rightarrow D_{CP}K$: arXiv:0802.4052, $B \rightarrow D_{CP}^*K$: arXiv:0807.2408, $B \rightarrow D_{CP}K^*$: PRD 72 071103 (2005))
 - ADS (CF and DCS states: $D^0 \rightarrow K\pi$, $K\pi\pi$) Belle: 657M BB pairs ($B \rightarrow DK$: arXiv:0804:2063) BaBar: 232M BB pairs ($B \rightarrow DK$, $B \rightarrow D^*K$, $B \rightarrow DK^*$ with $D \rightarrow K\pi$: PRD 72 032004 (2005))
 - Dalitz (multibody states: $D^0 \rightarrow K\pi\pi$, KKK, $\pi\pi\pi\pi$) Belle: 657M BB pairs ($B \rightarrow DK$, $B \rightarrow D^*K$ with $D^* \rightarrow D\pi^0$, $D^0 \rightarrow K_s\pi^*\pi^*$: arXiv:0803.3375) BaBar: 382M BB pairs ($B \rightarrow DK$, $B \rightarrow D^*K$ with $D^* \rightarrow D\pi^0$, $D\gamma$, $D^0 \rightarrow K_s\pi^*\pi^*$, $K_sK^*K^*$: arXiv:0804.2089) 371M BB pairs ($B^0 \rightarrow D^0K^{*0}$: Moriond EW 2008)
- Based on B⁰ decays (measurement of 2φ₁+φ₃)

Belle: 386M BB pairs $(B \rightarrow D^{*}\pi \text{ partial}, B \rightarrow D^{(^{)}}\pi \text{ full rec.: PRD 73 092003 (2006)})$ BaBar: 232M BB pairs $(B \rightarrow D^{*}\pi \text{ partial: PRD 71 112003 (2005)},$ $B \rightarrow D^{(^{)}}\pi, D\rho \text{ full rec.: PRD 73 111101 (2006)})$ 347M BB pairs $(B \rightarrow DK\pi \text{ time-dependent Dalitz: arXiv:0712.3469})$