A little Higgs model with exact dark matter parity

Pedro Schwaller

Institute for Theoretical Physics University of Zurich

The New, the Rare and the Beautiful Workshop Zurich, Switzerland January 6, 2010

Outline

- Introduction and Motivation
- 2 The Model
- Phenomenology

Based on arxiv:0906.1816 and arXiv:0912.3647 with A. Freitas and D. Wyler

Hierarchies and Goldstone bosons

- The Standard Model perfectly describes physics up to a few 100 GeV
- Naturalness requires new physics at the 1 TeV scale to stabilize the Higgs mass
- ullet Experiment: Generic new physics only allowed at $\sim 10~\text{TeV}$

Little Hierarchy Problem

Possible Solution: Higgs as Goldstone boson Georgi, Kaplan 1985

- Global symmetry group G broken to subgroup H by strong dynamics
- Yields massless Goldstone boson for each broken generator
- Higgs doublet realized as part of these bosons

Little Higgs models

However:

- Higgs couplings to gauge bosons and fermions break global symmetry
- generate Higgs mass terms at one loop: $\delta m_h \sim g \frac{\Lambda}{4\pi}$, $\lambda_{top} \frac{\Lambda}{4\pi}$
- again too large for $\Lambda \sim 10 \text{ TeV}$

Issue adressed some 20 years later:

Collective Symmetry Breaking Arkani-Hamed et. al. 2001/2002

- Enlarge G such that two separate global symmetries protect the Higgs
- Only collective breaking of both global symmetries lead to a Higgs mass

Little Higgs Models

The minimal Moose

Example: Arkani-Hamed et. al. 2002

- Global symmetry $G = SU(3)_L \times SU(3)_R$ broken to $H = SU(3)_V$
- Gauge $[SU(2) \times U(1)]_L \times [SU(2) \times U(1)]_R$ subgroups, broken to $[SU(2) \times U(1)]_{SM}$
- Taken separately, each gauge group preserves enough global symmetries to leave some Goldstone bosons massless
- Any contribution to the Higgs mass must involve both gauge groups, can only occur at the two loop level
- $\delta m_h \sim g_L g_R \frac{\Lambda}{(4\pi)^2}$, allows $\Lambda \sim 10 \text{ TeV}$

Goldstones $X = e^{2ix/f}$ transform under G as: $X \to LXR^{\dagger}$

Represented as "link" fields between global groups

$$SU(3)_L$$
 X $SU(3)_R$

The minimal Moose

For realistic model, need four link fields

$$X_i = e^{2ix_i/f}$$

Higgs quartic interaction obtained from

$$\mathcal{L}_P = \kappa f^4 \mathrm{tr}[X_1 X_2^\dagger X_3 X_4^\dagger] + \kappa' f^4 \mathrm{tr}[X_1 X_4^\dagger X_3 X_2^\dagger] + \mathrm{h.c.}$$

Respects collective symmetry breaking

Scalar particle content:

$$x_i = \begin{pmatrix} \phi_i + \frac{1}{\sqrt{3}} \eta_i & h_i \\ h_i^{\dagger} & -\frac{2}{\sqrt{3}} \eta_i \end{pmatrix}$$

 Each link field yields a real electroweak singlet, a complex doublet and a real triplet

Little Higgs models and T-parity

T-parity: Cheng, Low 2003, 2004

- Z₂ (parity) symmetry of scalar and gauge lagrangian
- Extended to symmetry of full model by adding mirror fermions: heavy partners for the SM quarks and leptons
- All new (heavy) particles are parity-odd
- Lightest T-odd particle stable: dark matter candidate!

Particle Spectrum, with $f \sim 1 \; {\rm TeV}$ and $\Lambda = 4\pi f$

T-parity forbids exchange of new particles at tree-level

Low masses (sub-TeV) for new particles possible

But T-parity is broken

Little Higgs models are effective theories of some strong dynamics \rightarrow should include WZW term Γ_{WZW} into effective Lagrangian HIII, HIII, 2007

Problem:

- ullet T-parity implemented as $X_i o X_i^\dagger$, $A_L \leftrightarrow A_R$
- The WZW term is odd under this operation:

$$\Gamma_{WZW}(X_i, A_L, A_R) \rightarrow -\Gamma_{WZW}(X_i, A_L, A_R)$$

and therefore leads to T-parity violating interactions.

The leading effect is the decay of A_H into pairs of W- or Z-bosons:

$$A_H$$
 Z
 A_H
 $W^ V$
 W^+
 V
 $W^ V$
 W^+
 V
 W
 W
 W

An exchange symmetry

Remember: The problem is that $X \to X^{\dagger}$ is not a symmetry of Γ_{WZW}

Alternative possibility:

• Consider two link fields X_1 and X_2 with opposite link direction:

$$X_1 \rightarrow L_1 X_1 R_1^{\dagger} \qquad X_2 \rightarrow R_2 X_2 L_2^{\dagger}$$

WZW term then given by

$$\Gamma_{WZW} = \Gamma(X_1, A_L, A_R) + \Gamma(X_2, A_R, A_L)$$

Even under the exchange symmetry

$$X_1 \leftrightarrow X_2$$
 $A_L \leftrightarrow A_R$

→ New parity symmetry: X-Parity

A little Higgs model with X-parity

- Take $[SU(3)_L \times SU(3)_R]^4 \rightarrow SU(3)^4$ breaking pattern (Minimal Moose), but with modified link field directions
- Gauge $[SU(2) \times U(1)]_L \times [SU(2) \times U(1)]_R$ subgroups with identical couplings
- Define X-parity as

$$X_1 \leftrightarrow X_2$$
 $X_3 \leftrightarrow X_4$ $A_L \leftrightarrow A_R$

Remnant of original T-parity remains as approximate symmetry

- Forbids vacuum expectation values for X-even singlets and triplets at the tree level, removes unwanted couplings
- Only the two X-even doublets h_a , h_b may aquire a vev

---- effective Two Higgs Doublet model

Fermion couplings

Want fermion sector that realizes X-parity linearly

Introduce two lefthanded fermion doublets for each flavor:

$$Q_a = (d_a, u_a, 0)^T$$
 $Q_b = (d_b, u_b, 0)^T$

- X-parity acts as $Q_a \leftrightarrow Q_b$
- Large mass for T-odd combination $Q_H = 1/\sqrt{2}(Q_a Q_b)$ from

$$\mathcal{L}_c = -rac{\lambda_c}{\sqrt{2}} f\left(Q_a \xi_1 - Q_b \Omega \xi_1^\dagger - Q_b \xi_2 \Omega + Q_a \Omega \xi_2^\dagger \Omega\right) Q_c^c + \mathrm{h.c.}$$

- where $Q_c^c=(d_c^c,u_c^c,0)^T$ Dirac partner for $Q_H,\,Q_c^c\to -\Omega Q_c^c$ under X-parity
- $\xi_i = \sqrt{X_i} = e^{ix_i/f}$

Top Yukawa coupling

- Yukawa couplings for fermion doublets break global SU(3) symmetries
- Large Higgs mass from top Yukawa \rightarrow need to make top sector SU(3) symmetric
- with X-parity, need

$$Q_{3a} = (d_{3a}, u_{3a}, U_a)^T, Q_{3b} = (d_{3b}, u_{3b}, U_b)^T, Q_{3c}^c = (d_{3c}^c, u_{3c}^c, U_c^c)^T$$

• Corresponding righthanded partners U_a^c , U_b^c

$$\mathcal{L}_{top} = -\lambda f Q_{3a} \left(X_3 + \Omega X_4^\dagger \Omega
ight) egin{pmatrix} 0 \ 0 \ 0 \ U_b^c \end{pmatrix} - \lambda f Q_{3b} \left(\Omega X_3^\dagger \Omega + X_4
ight) egin{pmatrix} 0 \ 0 \ U_a^c \end{pmatrix} + ext{h.c.}$$

• Parameters λ , λ_c constrained by $\lambda_{top} = 1/\sqrt{2}$, free parameter $R = \lambda/\lambda_c$ controls top mixing

Top quark sector

Linearizing \mathcal{L}_c and \mathcal{L}_{top} we obtain

- Two X-odd top partners $T_H = \frac{1}{\sqrt{2}}(u_{3a} u_{3b})$ and $T' = \frac{1}{\sqrt{2}}(U_a U_b)$
- Masses $M_{T_H} = 2\lambda_c f$ and $M_{T'} = 2\lambda f$

the X-even top quarks mix and yield

- Massive T quark with $M_T = 2\sqrt{\lambda^2 + \lambda_c^2} f$
- Massless top quark t with Yukawa coupling to ha doublet:

$$\lambda_{top} = \frac{\sqrt{2}\lambda\lambda_c}{\sqrt{\lambda^2 + \lambda_c^2}}$$

Scalar masses

Goldstone bosons receive O(f) masses from several sources:

- Explicit mass terms from Plaquette operators \mathcal{L}_p
- One- and two-loop masses from mirror fermion mass terms and kinetic terms
- One-loop masses from top Yukawa couplings

Resulting spectrum:

- All X-odd scalars receive $\mathfrak{O}(f)$ masses \to the gauge boson A_H is the lightest parity odd particle
- Most X-even scalars receive O(f) masses, except:
 - one Higgs doublet h_a
 - one scalar triplet φ_a

Electroweak Symmetry Breaking

- Higgs quartic potential V₄ from Plaquette terms, MSSM like
- quadratic potential generated radiatively:

$$V_2 = rac{1}{2} \left[m_a^2 |h_a|^2 + M_b^2 |h_b|^2 + (m_{ab}^2 h_a^\dagger h_b + \text{h.c.})
ight] \ M_b \sim \mathcal{O}(f), \qquad m_a, m_{ab} \sim \mathcal{O}(v)$$

- Electroweak symmetry breaking works if $|m_{ab}|^4 > m_a^2 M_b^2$
- Nonzero m_{ab} requires imaginary parameter in the scalar self interactions — CP-violation
- h_a , h_b aquire vev with $|\langle h_a \rangle|^2 + |\langle h_b \rangle|^2 = (246 \text{ GeV})^2$ for natural parameter choices

Physical Higgs states:

- Light ("little") Higgs h_0 (mostly from h_a)
- H^0 , A^0 , H^{\pm} with masses $\sim M_h$
- CP violating mixings suppressed by $m_{ab}/M_b \ll 1$

Phenomenology

Electroweak precision tests

Main contributions to T-parameter from

- Moderate custodial symmetry breaking in scalar sector
- Mixing in the top sector, depends on f and mixing parameter R
- Mass splitting of W_H^{\pm} , W_H^0 and of H^0 , A^0 , H^{\pm}

Allowed region in f-R plane, for fixed values of the mass splittings in the Higgs sector:

Note:

New particle masses around 1 TeV allowed! \rightarrow model can be tested at LHC

Particle Content

Particles		X-Parity
Heavy gauge bosons	A_H, Z_H, W_H^{\pm}	-
Mirror quarks	Q_H	-
Mirror leptons	L_H	-
Top partners	T	+
	T_H , T'	-
Triplets	Фх	-
	Φ_a, Φ_b	+
Singlets	η_x	-
	η_a, η_b	+
X-even doublets	$h_0, H^{0,\pm}, A^0$	+
X-odd dublets	h_{H1} , h_{H2}	-

Scalar masses depend on ultraviolet physics, cannot be computed precicely in the effective theory

- X-odd particles produced in pairs \longrightarrow missing energy signals since A_H escapes from the detector
- Not easy to find or discriminate from other models

- X-even T quark can be single and pair produced
- Sizeable production cross section if $M_T \lesssim 2 \text{ TeV}$
- Complicated decay signatures into Higgs sector

- Large cross section also possible for pair production of T'
- Top quark sector accessible at LHC

A smoking gun:

- Small mass of ϕ_a allows a large pair production cross section
- Protected by approximate T-parity, only decays into electroweak gauge bosons allowed (similar to $\pi^0 \to \gamma \gamma$)

Pair production at LHC ($\sqrt{s} = 14 \text{ TeV}$):

- Large branching of ϕ_a^0 into decay modes with one or two photons
- $\mathfrak{O}(\text{ GeV})$ mass splitting opens $\phi_a^{\pm} \to \phi_a^0 W^{\pm,*}$ channel for charged triplet fields

Multi-lepton signal rates ($m_a = 300 \text{ GeV}$):

$\Delta m_a = 5 \text{ GeV}$	10 TeV	14 TeV	$\Delta m_a = 20 \text{ GeV}$	10 TeV	14 TeV
$l^+\gamma\gamma\gamma \not\!$	1.04 fb	1.86 fb	$l^+\gamma\gamma\gamma\gamma\not$	0.47 fb	0.84 fb
$l^+l^+l^-\gamma\gamma \not\!$	0.049 fb	0.087 fb	$l^+l^+l^-\gamma\gamma\gamma \not\!$	0.038 fb	0.068 fb
$l^+l^-\gamma\gamma \not\!\! E$	0.27 fb	0.51 fb	$l^+l^-\gamma\gamma\gamma\gamma \not\!$	0.053 fb	0.10 fb

Multi-photon signal rates ($m_a = 300 \text{ GeV}$):

$\Delta m_a = 5 \text{ GeV}$	10 TeV	14 TeV	$\Delta m_a = 20 \text{ GeV}$	10 TeV	14 TeV
$\gamma\gamma + X$	17.5 fb	32.5 fb	$\gamma\gamma + X$	15.1 fb	28.2 fb
$\gamma\gamma\gamma + X$	6.82 fb	12.6 fb	$\gamma\gamma\gamma + X$	9.31 fb	17.4 fb
			$\gamma\gamma\gamma\gamma + X$	4.20 fb	7.87 fb

Conclusions

- Little Higgs models are an interesting solution to the hierarchy problem
- The Little Higgs model with X-Parity is viable and has a stable dark matter candidate
- Anomalous decays of light scalars make an early discovery at LHC possible

HAPPY BIRTHDAY DANIEL