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We compute the partial width for neutralino radiative decay 2~)--* )~(,~, in the minimal 
supersymmetric extension of the Standard Model, for arbitrary neutralino mixing and mass 
parameters. We identify regions of the supersymmetric parameter space in which the branching 
ratio can be appreciable. The advantages of using the nonlinear R-gauge in the calculation are 
emphasized. 

1. Introduction 

The search for supersymmetric particles remains one of the most important tasks 
for existing and future experimental facilities. Indeed, much theoretical work has 
been devoted to the hypothesis that "low-energy" supersymmetry is responsible for 
the scale of electroweak physics, which would imply that supersymmetric particles 
should exist with masses less than I TeV. Beyond this general expectation, there are 
no firm theoretical constraints on supersymmetric masses. Experimental bounds 
from current experiments imply that squarks and gluinos must be heavier than 
about 60 GeV [1], and (charged) sleptons are heavier than about 20 GeV [2]. Other 
limits exist, although they are rather complicated, since they usually depend on 
other assumptions, such as the existence of a very light LSP (lightest supersymmet- 
tic particle). 

In the development of search strategies for supersymmetric particles, it is crucial 
to have a thorough understanding of both the production mechanisms and the decay 
properties. At hadron colliders, it is the production of the colored squarks and 
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Motivation for two-component spinors

• The fundamental irreducible spin-1/2 degrees of freedom are two-

component fermions.

• In chiral theories, each two-component fermion possesses different quantum

numbers under the Standard Model gauge group.

• In practical computations involving two-component fermions, Dirac and

Majorana fermions are treated in a universal framework.

• Theories of massive Majorana neutrinos and supersymmetric theories

(which contain many Majorana fermions) are especially well suited for

two-component spinor techniques.



I assume that you are well familiar with the basics of undotted and dotted

two-component spinor indices. We follow the usual convention for suppressing

spinor indices by adopting a summation convention where we contract indices

as follows:
α
α and α̇

α̇ .

For example,
ξη ≡ ξαηα, ξ†η† ≡ ξ†α̇η

† α̇,

ξ†σμη ≡ ξ†α̇σ
μα̇βηβ, ξσμη† ≡ ξασμ

αβ̇
η† β̇

ξσμνη ≡ ξα(σμν)α
βηβ , ξ†σμνη† ≡ ξ†α̇(σ

μν)α̇β̇η
† β̇ ,

where

σμ = (1 , �σ) , σμ = (1 , −�σ) ,

and

σμν =
i

4
(σμσν − σνσμ) , σμν =

i

4
(σμσν − σνσμ) .



Useful identities and Fierz relations

εαβε
γδ

= −δγαδδβ + δ
δ
αδ

γ
β, εα̇β̇ε

γ̇δ̇
= −δγ̇α̇δδ̇β̇ + δ

δ̇
α̇δ

γ̇

β̇
,

σμαα̇σ
β̇β
μ = 2δβαδ

β̇
α̇ ,

σ
μ
αα̇σμββ̇ = 2εαβεα̇β̇ , σ

μα̇α
σ
β̇β
μ = 2ε

αβ
ε
α̇β̇
,

[σμσν + σνσμ]α
β
= 2gμνδβα ,

[σμσν + σνσμ]α̇β̇ = 2gμνδα̇β̇ ,

σ
μ
σ
ν
σ
ρ
= g

μν
σ
ρ − g

μρ
σ
ν
+ g

νρ
σ
μ
+ iε

μνρκ
σκ ,

σμσνσρ = gμνσρ − gμρσν + gνρσμ − iεμνρκσκ ,

where gμν = diag(1 , −1 , −1 , −1) in our conventions. Computations of cross sections

and decay rates generally require traces of alternating products of σ and σ matrices:

Tr[σμσν] = Tr[σμσν] = 2gμν ,

Tr[σ
μ
σ
ν
σ
ρ
σ
κ
] = 2 (g

μν
g
ρκ − g

μρ
g
νκ

+ g
μκ
g
νρ

+ iε
μνρκ

) ,

Tr[σμσνσρσκ] = 2 (gμνgρκ − gμρgνκ + gμκgνρ − iεμνρκ) ,

where ε0123 = −ε0123 = +1 in our conventions. Traces involving an odd number of σ and

σ matrices cannot arise, since there is no way to connect the spinor indices consistently.



We shall deal with both commuting and anticommuting spinors, which we shall denote

generically by zi. Then, the following identities hold

z1z2 = −(−1)
A
z2z1

z†1z
†
2 = −(−1)Az†2z

†
1

z1σ
μ
z
†
2 = (−1)

A
z
†
2σ

μ
z1

z1σ
μ
σ
ν
z2 = −(−1)

A
z2σ

ν
σ
μ
z1

z†1σ
μσνz†2 = −(−1)Az†2σ

νσμz†1

z
†
1σ

μ
σ
ρ
σ
ν
z2 = (−1)

A
z2σ

ν
σ
ρ
σ
μ
z
†
1 ,

where (−1)A = +1[−1] for commuting [anticommuting] spinors. Finally, the Fierz

identities are given by:

(z1z2)(z3z4) = −(z1z3)(z4z2) − (z1z4)(z2z3) ,

(z†1z
†
2)(z

†
3z

†
4) = −(z†1z

†
3)(z

†
4z

†
2) − (z†1z

†
4)(z

†
2z

†
3) ,

(z1σ
μ
z
†
2)(z

†
3σμz4) = −2(z1z4)(z

†
2z

†
3) ,

(z†1σ
μz2)(z

†
3σμz4) = 2(z†1z

†
3)(z4z2) ,

(z1σ
μz†2)(z3σμz

†
4) = 2(z1z3)(z

†
4z

†
2) .



Two-component spinor wave functions

The (12, 0) spinor field ξα(x) describes a neutral Majorana fermion. The

free-field Lagrangian is:

L = iξ†σμ∂μξ − 1
2m(ξξ + ξ†ξ†) .

On-shell, ξ satisfies the free-field Dirac equation, iσμα̇β∂μξβ = mξ† α̇. The

solution is:

ξα(x) =
∑
s

∫
d3�p

(2π)3/2(2Ep)1/2
[
xα(�p, s)a(�p, s)e

−ip·x + yα(�p, s)a
†(�p, s)eip·x

]
,

and ξ†α̇ = (ξα)
†. The two-component fermion wave functions, x and y are

commuting spinors that satisfy the momentum-space Dirac equation:

(p·σ)α̇βxβ = my† α̇ , (p·σ)αβ̇y† β̇ = mxα ,

(p·σ)αβ̇x† β̇ = −myα , (p·σ)α̇βyβ = −mx† α̇ .



The spin or helicity is labeled by s = ±1
2. For spin, we quantize in the rest

frame along a fixed axis ŝ ≡ (sin θ cosφ , sin θ sinφ , cos θ). Eigenstates of
1
2�σ ·ŝ are denoted by χs, i.e.,

1
2�σ ·ŝχs = sχs,. Explicitly,

χ1/2(ŝ) =

⎛
⎝e−iφ/2 cos(θ/2)

eiφ/2 sin(θ/2)

⎞
⎠ , χ−1/2(ŝ) =

⎛
⎝−e−iφ/2 sin(θ/2)

eiφ/2 cos(θ/2)

⎞
⎠ .

Introduce the spin 4-vector for massive fermions. For fixed-axis spin states,

Sμ ≡ (0 ; ŝ) in the rest frame, boosting to the frame where p = (Ep ; �p),

Sμ =

(
�p·ŝ
m

; ŝ+
(�p·ŝ) �p

m(E +m)

)
.

Helicity states are defined to be eigenstates of 1
2�σ ·p̂, i.e., 1

2�σ ·p̂χλ = λχλ

(λ = ±1
2). The explicit forms for χλ are the same as above, with θ and φ the

polar and azimuthal angles of p̂. The spin 4-vector is defined by taking ŝ = p̂.

Thus, Sμ = 1
m (|�p| ; Ep̂). In the high energy limit, Sμ = pμ/m+O(m/E).



Explicit construction of the x and y wave functions

The Dirac equation implies that in the rest frame x1 = y† 1 and x2 = y† 2.
That is, xα(�p = 0) = y† α̇(�p = 0) are linear combinations of the χs (s = ±1

2).

Choose xα(�p = 0, s) = y† α̇(�p = 0, s) =
√
mχs, and boost to �p �= 0:

xα(�p, s) =
√
p·σ χs , yα(�p, s) = 2s

√
p·σ χ−s ,

x† α̇(�p, s) = −2s
√
p·σ χ−s , y† α̇(�p, s) =

√
p·σ χs .

For helicity spinors, replace s with λ. For massless fermions, we must use

helicity spinors. Putting E = |�p| and m = 0,

xα(�p, λ) =
√
E/2 (1− 2λ)χλ ,

yα(�p, λ) =
√
E/2 (1 + 2λ)χ−λ ,

x† α̇(�p, λ) =
√
E/2 (1− 2λ)χ−λ ,

y† α̇(�p, λ) =
√
E/2 (1 + 2λ)χλ .

For a given λ, only one helicity component of x and y survives.



Projection operators

xα(�p, s)x
†
β̇
(�p, s) = 1

2(pμ − 2smSμ)σ
μ

αβ̇
,

y
† α̇

(�p, s)y
β
(�p, s) = 1

2(p
μ
+ 2smS

μ
)σ

α̇β
μ ,

xα(�p, s)y
β
(�p, s) = 1

2

(
mδα

β − 2s[S ·σ p·σ]αβ
)
,

y
† α̇

(�p, s)x
†
β̇
(�p, s) = 1

2

(
mδ

α̇
β̇ + 2s[S ·σ p·σ]α̇β̇

)
.

For massless spinors, the helicity projection operators are:

xα(�p, λ)x
†
β̇
(�p, λ) = (12 − λ)p·σαβ̇ ,

y† α̇(�p, λ)yβ(�p, λ) = (12 + λ)p·σα̇β ,
xα(�p, λ)y

β
(�p, λ) = y

† α̇
(�p, λ)x

†
β̇
(�p, λ) = 0 .

Summing over s (or λ) yields:∑
s

xα(�p, s)x
†
β̇
(�p, s) = p·σαβ̇ ,

∑
s

y† α̇(�p, s)yβ(�p, s) = p·σα̇β ,
∑
s

xα(�p, s)y
β(�p, s) =mδα

β ,
∑
s

y† α̇(�p, s)x†
β̇
(�p, s) = mδα̇β̇ .



Fermion mass diagonalization

The Lagrangian of a collection of free anti-commuting spin-1/2 “interaction-eigenstate”fields

ξ̂αi(x), labeled by flavor index i:

L = iξ̂
† i
σ
μ
∂μξ̂i − 1

2M
ij
ξ̂iξ̂j − 1

2Mijξ̂
†,i
ξ̂
†,j
,

where Mij ≡ (Mij)∗ is a complex symmetric matrix. We shall rewrite this in terms of

mass-eigenstate fields ξ(x) = Ω−1ξ̂(x), where Ω is unitary and chosen such that

ΩTM Ω = m = diag(m1,m2, . . .).

In linear algebra, this is called the Takagi-diagonalization of a complex symmetric matrixM .

To compute the values of the diagonal elements of m, one may simply note that

Ω
T
MM

†
Ω

∗
= m

2
.

MM† is hermitian, and thus it can be diagonalized by a unitary matrix. Thus, the mi of

the Takagi diagonalization are the non-negative square-roots of the eigenvalues of MM†.

In terms of the mass eigenstates,

L = iξ
† i
σ
μ
∂μξi − 1

2mi(ξiξi + ξ
† i
ξ
† i
) .



The Dirac fermion

A charged fermion has twice the number of degrees of freedom as the neutral fermion. If

χ and η are oppositely charged and degenerate in mass, then the corresponding free-field

Lagrangian is:

L = iχ
†
σ
μ
∂μχ + iη

†
σ
μ
∂μη −m(χη + χ

†
η
†
) .

Together, χ and η† constitute a single Dirac fermion. The corresponding mass matrix

is ( 0 m
m 0 ). One could Takagi-diagonalize this matrix, although the corresponding mass

eigenstates would not be eigenstates of charge.

The solutions to the corresponding Dirac field equations are:

χα(x) =
∑
s

∫
d3�p

(2π)3/2(2Ep)1/2

[
xα(�p, s)a(�p, s)e

−ip·x + yα(�p, s)b
†(�p, s)eip·x

]
,

ηα(x) =
∑
s

∫
d3�p

(2π)3/2(2Ep)1/2

[
xα(�p, s)b(�p, s)e

−ip·x + yα(�p, s)a
†(�p, s)eip·x

]
.



More generally, for a collection of interaction-eigenstate charged fermion pairs χ̂αi(x),

η̂iα(x), the free-field Lagrangian is:

L = iχ̂
† i
σ
μ
∂μχ̂i + iη̂

†
iσ
μ
∂μη̂

i −M
i
jχ̂iη̂

j −Mi
j
χ̂

† i
η̂
†
j ,

where Mi
j is an arbitrary complex matrix, and Mi

j ≡ (Mi
j)

∗. We diagonalize the mass

matrix by introducing mass-eigenstates χ(x) = L−1χ̂(x) and η(x) = R−1η̂(x) where L

and R are unitary matrices that are chosen such that:

L
T
MR = m = diag(m1,m2, . . .),

with themi real and non-negative. This is the singular-value decomposition of linear algebra,

which states that for any complex matrix M , the unitary matrices L and R above exist.

Due to

LT (MM†)L∗ = R†(M†M)R = m2 ,

the mi are the non-negative square roots of the eigenvalues of MM† (or equivalently,

M†M). In terms of the mass eigenstates,

L = iχ† iσμ∂μχi + iη†i σ
μ∂μη

i −mi(χiη
i + χ† iη†i ) .

The mass matrix now consists of 2 × 2 blocks
( 0 mi
mi 0

)
along the diagonal.



Feynman rules for two-component fermions

The rules for assigning two-component external state spinors are then as follows.

• For an initial-state left-handed (12, 0) fermion: x.

• For an initial-state right-handed (0, 12) fermion: y†.

• For a final-state left-handed (12, 0) fermion: x†.

• For a final-state right-handed (0, 12) fermion: y.

The two-component external state fermion wave functions are distinguished by their Lorentz

group transformation properties, rather than by their particle or antiparticle status as in

four-component Feynman rules. These rules are summarized in the mnemonic diagram:

x x†

y† y

L (12, 0) fermion

R (0, 12) fermion

Initial State Final State



Propagators

〈0|Tξα(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

∑
s

xα(�p, s)x̄β̇(�p, s)

〈0|T ξ̄α̇(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑
s

ȳα̇(�p, s)yβ(�p, s)

〈0|T ξ̄α̇(x)ξ̄β̇(y) |0〉FT =
i

p2 −m2 + iε

∑
s

ȳα̇(�p, s)x̄β̇(�p, s)

〈0|Tξα(x)ξβ(y) |0〉FT =
i

p2 −m2 + iε

∑
s

xα(�p, s)y
β
(�p, s)

where FT indicates the Fourier transform from position to momentum space. These results

have an obvious diagrammatic representation:

(a) (b)

p

αβ̇

p

β α̇

ip·σαβ̇
p2 −m2

ip·σα̇β
p2 −m2

(c) (d)
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα

β

Arrows on two-component fermion lines always run away from dotted indices at a vertex and

toward undotted indices at a vertex. Arrows do not represent the flow of fermion number!



The arrow-preserving propagators can be described by one diagram:

β̇ α

p ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

Here the choice of the σ or the σ version of the rule is uniquely determined by the height of

the indices on the vertex to which the propagator is connected.

For the case of charged fermions, we write down the rules for propagators involving the

charged pair χ and η:

χ χ ηη

p

αβ̇ β̇ α

p

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

ip·σαβ̇
p2 −m2

or
−ip·σβ̇α
p2 −m2

χ η ηχ
β̇ α̇ αβ

im

p2 −m2
δα̇β̇

im

p2 −m2
δα

β



Fermion interactions

The mass-eigenstate basis ψ is related to the interaction-eigenstate basis ψ̂ by a unitary

rotation:

ψ̂ ≡

⎛⎜⎜⎝
ξ̂

χ̂

η̂

⎞⎟⎟⎠ = Uψ ≡

⎛⎜⎜⎝
Ω 0 0

0 L 0

0 0 R

⎞⎟⎟⎠
⎛⎜⎜⎝
ξ

χ

η

⎞⎟⎟⎠ ,

whereΩ, L, andR are constructed as described previously. Thus, in terms of mass-eigenstate

fields, the fermion–scalar boson interactions are:

Lint = −1
2Y

IjkφIψjψk − 1
2YIjkφ

Iψ† jψ† k .

In the gauge-interaction basis for the left-handed two-component fermions the corresponding

interaction Lagrangian is given by

Lint = −gaAμ
aψ̂

† i
σμ(T

a
)i
j
ψ̂j ,

If the gauge symmetry is unbroken, then the index a runs over the adjoint representation of

the gauge group, and the (T a)i
j are hermitian representation matrices of the gauge group

acting on the left-handed fermions.



In terms of mass-eigenstate fermion fields,

Lint = −Aμ
aψ

† i
σμ(G

a
)i
j
ψj ,

where Ga = gaU
†T aU (no sum over a).

Consider separately the case of gauge interactions of charged Dirac fermions. Consider pairs

of left-handed (12, 0) interaction-eigenstate fermions χ̂i and η̂
i that transform as conjugate

representations of the gauge group (hence the difference in the flavor index heights). The

Lagrangian for the gauge interactions of Dirac fermions can be written in the form:

Lint = −gaAμ
aχ̂

† i
σμ(T

a
)i
j
χ̂j + gaA

μ
aη̂

†
i σμ(T

a
)j
i
η̂
j
,

where the Aa
μ are gauge boson mass-eigenstate fields. Here we have used the fact that if

(T a)i
j are the representation matrices for the χ̂i, then the η̂i transform in the complex

conjugate representation with generator matrices −(T a)∗ = −(T a)T . In terms of mass-

eigenstate fermion fields,

Lint = −Aμ
a

[
χ

† i
σμ(G

a
L)i

j
χj − η

†
i σμ(G

a
R)j

i
η
j
]
,

where Ga
L = gaL

†T aL and Ga
R = gaR

†T aR (no sum over a).



Feynman rules for fermion interactions

I
k, β

j, α

−iY Ijkδα
β or − iY Ijkδβ

α

I

k, β̇

j, α̇

−iYIjkδα̇β̇ or − iYIjkδ
β̇
α̇

a, μ
j, β

i, α̇

−i(Ga)i
j σα̇βμ or i(Ga)i

j σμβα̇

a, μ
β

α̇

−i(Ga
L)i

j σα̇βμ or ig(Ga
L)i

j σμβα̇

χi

χj

a, μ
β̇

α

i(Ga
R)i

j σβ̇αμ or −ig(Ga
R)i

j σμαβ̇

ηi

ηj



Rules for invariant amplitudes

• When computing an amplitude for a given process, all possible diagrams should be drawn

that conform with the rules for external wave functions, propagators, and interactions.

• Starting from any external wave function spinor, or from any vertex on a fermion loop,

factors corresponding to each propagator and vertex should be written down from left to

right, following the line until it ends at another external state wave function or at the

original point on the fermion loop.

• If one starts a fermion line at an x or y external state spinor, it should have a raised

undotted index in accord with our summation conventions. Or, if one starts with an x†

or y†, it should have a lowered dotted spinor index. If one ends with an x or y external

state spinor, it will have a lowered undotted index, while if one ends with an x† or y†

spinor, it will have a raised dotted index. The preceding determines whether a σ or σ

rule should be used.

• A relative minus sign is imposed between terms contributing to a given amplitude

whenever the ordering of external state spinors (written left-to-right) differs by an odd

permutation.

• Each closed fermion loop gets a factor of −1.



Conventions for fermion names and fields

There is a one-to-one correspondence between the Majorana fermion particle names and the

left-handed (12, 0) fields, but for Dirac fermions there are always two distinct two-component

fields that correspond to each particle name. We shall always label fermion lines with the

two-component fields, rather than the particle names, with the following conventions:

• Initial-state external fermion lines (which always have physical four-momenta going into

the vertex) in Feynman diagrams are labeled by the corresponding unbarred (left-handed)

field if the arrow is into the vertex, and by the barred (right-handed) field if the arrow is

away from the vertex.

Initial-state e−: e e†

Initial-state e+:
e e†

Initial-state Ñi:
χ0
i χ0 †

i



• Final-state external fermion lines in complete Feynman diagrams (which always have

physical four-momenta going out of the vertex) are labeled by the corresponding barred

(right-handed) field if the arrow is into the vertex, and by the unbarred (left-handed) field

if the arrow is away from the vertex.

Final-state e−:
e e†

Final-state e+:
e e†

Final-state Ñi:
χ0
i χ0 †

i

• Internal fermion lines in Feynman diagrams are also always labeled by the unbarred,

left-handed field(s). Internal lines containing a propagator with opposing arrows can carry

two labels.

• In the Feynman rules for interaction vertices, the external lines are always labeled by the

unbarred left-handed field, regardless of its arrow direction.



Fermion name Two-component fields

�− (lepton) � , �
†

�+ (anti-lepton) � , �†

ν (neutrino) ν , ν †

ν̄ (antineutrino) ν , ν†

q (quark) q , q †

q̄ (anti-quark) q , q†

f (quark or lepton) f , f
†

f̄ (anti-quark or anti-lepton) f , f†

Ñi (neutralino) χ0
i , χ

0 †
i

C̃+
i (chargino) χ+

i , χ
−†
i

C̃−
i (anti-chargino) χ−

i , χ
+ †
i

g̃ (gluino) g̃ , g̃ †

Fermion and anti-fermion names and two-component fields in the Standard Model and the MSSM. (To

incorporate massive neutrinos, one should add ν and ν †.)



Gauge interactions of charginos and neutralinos

Introduce U and V , the unitary matrices that diagonalize the chargino mass matrix via the

singular value decomposition:

U∗

⎛⎜⎜⎜⎝M2 gvu

gvd μ

⎞⎟⎟⎟⎠V −1 = diag(mC̃1
,mC̃2

) .

Similarly, N is a unitary matrix that Takagi-diagonalizes the neutralino mass matrix,

N
∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 −g′vd/
√
2 g′vu/

√
2

0 M2 gvd/
√
2 −gvu/

√
2

−g′vd/
√
2 gvd/

√
2 0 −μ

g′vu/
√
2 −gvu/

√
2 −μ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
N

−1
= diag(m

Ñ1
,m

Ñ2
,m

Ñ3
,m

Ñ4
) .

Here, vu and vd are the neutral Higgs vacuum expectation values, M1, M2 are the gaugino

Majorana mass parameters and μ is the higgsino mass parameter.



We define:

O
L
ij = − 1√

2
Ni4V

∗
j2 +Ni2V

∗
j1 ,

OR
ij =

1√
2
N∗
i3Uj2 +N∗

i2Uj1 .

The Feynman rules for the interactions of the W and the photon with the neutralinos and

charginos are displayed below.

γ
χ+
j

χ+
i

−ie δijσα̇βμ
α̇

β

μ

γ
χ−
j

χ−
i

ie δijσ
α̇β
μ

α̇

β

μ

W−
χ+
j

χ0
i

ig OL
ij σ

α̇β
μ

α̇

β

μ

W−
χ0
i

χ−
j

−ig OR
ij σ

α̇β
μ

α̇

β

μ

W+

χ0
i

χ+
j

ig OL∗
ij σ

α̇β
μ

α̇

β

μ

W+

χ−
j

χ0
i

−ig OR∗
ij σ

α̇β
μ

α̇

β

μ

For each rule, one has a version with lowered spinor indices by replacing σα̇βμ → −σμβα̇.
Fermion lines are labeled by the two-component fermion field names previously given.



Neutralino radiative decay

The dominant neutralino decays are expected to be:

• Two body decays: Ñj → ÑiZ
0 , Ñih

0 , C̃±
i W

∓ , Γ ∼ O(g2MÑj
),

• Three body decays: Ñj → Ñiff̄ , Ñj → C̃±
i ff̄

′, Γ ∼ O(g4MÑj
),

• Radiative one-loop decays: Ñj → Ñiγ , Γ ∼ O(g4e2MÑj
).

Often, the two-body decay mode is kinematically closed. It is possible for the

radiative one-loop branching ratio to be enhanced as compared to the three-

body tree-level decay branching ratio, in certain special regions of the SUSY

parameter space. This would lead to SUSY events with missing transverse

energy that contain hard photons.
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(°) 

#" I 

l 

~0 
Xi 

(e) ~o (g) 

:, 

W + 

Z o 

(i) ~o (k) , ~  9' 

(m) -0 (o) 
~4 x ' x / ' w ' / x ~  7 

G+ / Xi G ÷ " I 
~o / /  I 

-0 ~ ~0 Fig. 1. Triangle graphs contributing to Xj Xi Y. Only half the graphs are shown, with internal 
particles: (a) f'ff; (c) fff; (e) ~+~+W;  (g) ~+WW; (i) ~ + ~ + H - ;  (k) ~ + H  H ; (m) ~ + ~ + G  ; 
(o) ~ + G  G - .  The graphs not shown (b, d . . . . .  p) differ from their "par tners"  (a,c . . . . .  o) only in that the 

momentum routing of the loop is clockwise instead of counterclockwise. 

-0 and c i is the sign of the mass eigenvalue of )~0 which where Mj is the mass of Xj 
arises when the neutralino mass matrix is diagonalized. The above form of the 
matrix element also indicates the physical relevance of e~; it is related to the CP 
quantum number of 2 °. That is, depending on the relative CP quantum numbers of 
~0 X~ and 2 °, the effective -o-o X~Xj7 interaction is either proportional to o~'~k.e * or 

-o is then easily calculated: yso""k.E *. The radiative decay width of Xj 

8rrM] (4) 



W±C̃±C̃± triangles using two-component spinor techniques

χ0
j

χ0
i

γ

χ+
k

χ+
k
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χ0 †
j

χ0 †
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γ

χ−
k
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k

W(b)
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γ
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k
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χ0 †
j

χ0 †
i

γ
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k

χ+
k

χ+
k

χ−
k

W(d)

χ0
j

χ0 †
i

γ

χ−
k

χ−
k

χ+
k

W(e)

χ0 †
j

χ0
i

γ

χ+
k

χ−
k

χ−
k

W(f)

χ0
j

χ0 †
i

γ

χ−
k

χ+
k
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k

W(g)

χ0 †
j

χ0
i

γ

χ+
k

χ+
k

χ−
k

W(h)



One graph from the computation that employs four-component spinor techniques becomes

eight separate graphs in the two-component spinor formalism.

χ0
j(p)

χ0
i (k1)

γ (k2)

χ+
k
(q − k2)

χ+
k
(q)

W(a)

χ0 †
j

χ0 †
i

γ

χ−
k

χ−
k

W(b)

iMa =
∑
k

∫
d4q

(2π)4
x†
i [igO

L
jkσ

μ]
iσ·(q − k2)

(q − k2)2 −m2
k

[−ieσ·ε∗] iσ·q
q2 −m2

k

[igOL ∗
ik σ

ν]xjD
W
μν ,

iMb =
∑
k

∫
d4q

(2π)4
yi[igO

R
jkσ

μ
]
iσ·(q − k2)

(q − k2)2 −m2
k

[−ieσ·ε∗] iσ·q
q2 −m2

k

[igO
R ∗
ik σ

ν
]y

†
jD

W
μν ,

where mk ≡ MC̃k
and

D
W
μν ≡ −igμν

(q − p)2 −m2
W

.

The choice of the σ version or σ version of the propagator and vertex rule is dictated by the

order you choose to circulate the graph. The other six graphs are similarly evaluated, with

appropriate vertex and propagator factors. There are no extra minus signs if we keep the

same ordering of the spinors for all graphs.



Note that in all the graphs shown, positive electric charge circulates in a counterclockwise

direction. In addition, we must add the corresponding eight graphs in which positive

electric charge circulates in a clockwise direction. This can be done by flipping the electric

charge of all internal chargino labels, without altering any other feature of the graphs. The

corresponding amplitudes are simply obtained by the replacements:

O
L → −OR ∗

, O
R → −OL ∗

, e → −e .

Adding up all graphs yields:

M = ig
2
e
∑
k

∫
d4q

(2π)4
1

(q2 −m2
k)[(q − k2)2 −m2

k][(q − p)2 −m2
W ]

×
{
(OL

ikO
L ∗
jk −OR ∗

ik O
R
jk)x

†
iσ

μ[σ·(q − k2)σ·ε∗σ·q +m2σ·ε∗]σμxj

(OR
ikO

R ∗
jk −OL ∗

ik O
L
jk)yiσ

μ[σ·(q − k2)σ·ε∗σ·q +m2σ·ε∗]σμy†j
m(O

L
ikO

R ∗
jk − O

R ∗
ik O

L
jk)x

†
iσ

μ
[σ·(q − k2)σ·ε∗ + σ·ε∗σ·q]σμy†j

m(O
R
ikO

L ∗
jk − O

L ∗
ik O

R
jk)yiσ

μ
[σ·(q − k2)σ·ε∗ + σ·ε∗σ·q]σμxj

}
.



In four-component notation [where PR,L ≡ 1
2(1 ± γ5)], the loop amplitude is:

M = ig
2
e
∑
k

∫
d4q

(2π)4
1

(q2 −m2
k)[(q − k2)2 −m2

k][(q − p)2 −m2
W ]

×
{
uiγ

μ
(O

L
ikPL + O

R
ikPR)(/q − /k2 +m)/ε

∗
(/q +m)γμ(O

L ∗
jk PL +O

R ∗
jk PR)uj

−(O
L → −OR ∗

, O
R → −OL ∗

)

}
,

which reproduces the result obtained by Haber and Wyler. The first term above arises from the

four-component spinor Feynman graph with the positive charge circulating counterclockwise

in the loop. The second term, denoted above by −(OL → −OR ∗ , OR → −OL ∗)

corresponds to a clockwise circulation of positive charge. This second term requires careful

treatment in the four-component spinor formalism (which has been systematized by the

four-component Majorana Feynman rules of Denner and collaborators∗ and rederived by

Dreiner, Haber and Martin).

∗A. Denner, H. Eck, O. Hahn and J. Kublbeck, “Compact Feynman rules for Majorana fermions,” Phys.

Lett. B291 (1992) 278; “Feynman rules for fermion number violating interactions,” Nucl. Phys. B387 (1992)

467.
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and the couplings of the outgoing neutralino to the particles in the loop by 

G = gLPL + gRPR, (6) 

where PL, R = ½(1 -Y- "fS) and factors of i~,. have been removed. Then, the matrix 
element corresponding to graph e, for a fixed chargino state 2~ (with mass Mk) in 
the triangle, is given by: 

• 2 f  d4q 1 
-/~e = teg j (2¢r)----- ~ U ( k l ) ~ / t G ( 4  - ~2 -4- mk)¢*(k2)(¢q- mk)"[itFl.d(p)~l, (7)  

where 

D l = ( q  2 - M 2 ) [ ( q  - k 2 )  2 - M 2 l [ ( q - p )  2 - m 2 ] .  (8) 

Graph f is obtained from graph e by reversing the direction of the flow of charge 
in the triangle. By convention, the arrow on a fermion line denotes the direction of 
the 2+, and in general indicates the flow of positive fermion number. (In this 
language, electrons and quarks have positive fermion number, while the correspond- 
ing antiparticles have negative fermion number.) Thus, graph f will involve vertices 
with clashing arrows. In appendix A, we discuss how one deals with such a 
situation. Following the procedure described there, we find 

• 2 /" d 4 q  
• ff/Zf = --leg j ~ - - - ~  U(kl)['~gG*clT(~2- 4-}- Mk)T~/*T(k2) 

X --4+ Mk)T[--C 1yuF*]Tu(p)(1/D1), (9) 

where F* and G* are defined by 

F* - (fI*PL + f ~ P R ) ' j ,  G* ~ ( g ~ P L  + g~PR)~i. (10,11) 

An extra minus sign has been inserted due to Pauli statistics, since the two diagrams 
differ by the exchange of two (anticommuting) external fermions. (This is most 
easily understood by examining the crossed reaction "~ ~ ;~/0~0.) Note that in 
obtaining eq. (9), we have reversed the direction of the loop momentum q as 
compared with graph e. Using the properties of the charge conjugation matrix C: 
(i) C T :  - C ,  (ii) c-l~gc = --'yJ, and (iii) C-1"y5 C = ] tT, 5 we may rewrite eq. (9) as 
follows: 

:2 d 4 q  ~ ~, 
M g f = - i e g  f~7~(kl)V G ( 4 - ~ 2 + M k ) ~ * ( k 2 ) ( 4 + M k ) y u f f * u ( p ) ~ ,  

(12) 
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Contour plot for the branching ratio for the radiative neutralino decay, Ñ2 → Ñ1 + γ, for tan β = 1.2 and μ = −2mZ . The

squark and slepton masses are all taken degenerate and equal to 1 TeV, and mA = 300 GeV. Taken from S. Ambrosanio and

B. Mele, Phys. Rev. D55 (1997) 1399.



Branching ratio for the radiative neutralino decay, Ñ2 → Ñ1 + γ, for different choices of gaugino mass parameters M1 and M2 in

a model of split supersymmetry. Values of the higgsino mass parameter μ and tan β are varied randomly. This figure is taken from

M.A. Diaz, B. Panes and P. Urrejola, arXiv:0910.1554 [hep-ph].
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