ANARCHY vs. STRUCTURE

(flavor in supersymmetry)

based on GH, Y. Hochberg and Y. Nir, 0812.0511 [hep-ph], JHEP03(2009)115, and 1001.asap.

Gudrun Hiller, Dortmund

6.1.2010

The absence of O(1) New Physics observations in FCNC-processes implies that physics at the TeV-scale has non-generic flavor properties.

In particular, suppression mechanisms of similar power as CKM and GIM, which are built-in in the SM, need to be at work.

A model-independent framework, which passes all current flavor-tests, is to assume that flavor is broken only through the Yukawa matrices, as in the SM.

This is termed minimal flavor violation.

Chivukula, Georgi '87; d'Ambrosio et al '02 non-symmetry based definitions: Ali,London '99; Buras² '00

Very predictive framework.

As in the SM, the origin of flavor is not addressed.

$$Y_{u} \sim \begin{pmatrix} 10^{-5} & -0.002 & 0.008 + i \, 0.003 \\ 10^{-6} & 0.007 & -0.04 \\ 10^{-8} + i \, 10^{-7} & 0.0003 & 0.94 \end{pmatrix}$$
$$Y_{d} \sim \operatorname{diag} \left(10^{-5}, 5 \cdot 10^{-4}, 0.025\right) \quad \left(\cdot \frac{\langle H_{u} \rangle}{\langle H_{d} \rangle}\right)$$
$$Y_{e} \sim \operatorname{diag} \left(10^{-6}, 6 \cdot 10^{-4}, 0.01\right) \quad \left(\cdot \frac{\langle H_{u} \rangle}{\langle H_{d} \rangle}\right)$$

Very peculiar pattern.

* The superpotential (N = 1, unbroken R-parity) is MFV. $W_{MSSM} = QY_uH_uU + QY_dH_dD + LY_eH_dE + \mu H_dH_u$

 Squark flavor-mixing within MFV expressed through quark-Yukawas

$$\tilde{M}_Q^2 = \tilde{m}^2 (a_1 \mathbf{1} + b_1 Y_u Y_u^{\dagger} + b_2 Y_d Y_d^{\dagger})$$
 etc.

Controlled departure from flavor-blind SUSY breaking.

 Anomaly mediation, gauge mediation and CMSSM/mSUGRA (by construction) are MFV.

 Generic feature of such models are highly degenerate first and second generation squarks.

MFV MSSM Spectra

TESLA TDR Part III '01

Running MFV Coefficients b_i/a_j

RG-running suppresses flavor violation towards the weak scale. For low $\tan \beta$, (minimal) anomaly mediation becomes exactly flavor blind in the QIR-fixed point limit of the top-Yukawa.

Predictivity and large effects in FCNC loops

* Predictive O(1) effects within MFV models if $\tan \beta$ largish.many works Here, AMSB ($m_{3/2} = 40$ TeV) Figs from Allanach et al 0902.4880

Analytical expressions for the full flavor structure, that is, a_i, b_j or $(\delta^q)_{ij}$, within mAMSB 0902.4880 .

A viable non-MFV model ?

* realistic, viable

- * at which level do non-MFV effects in which observables appear?
- * access structure of flavor breaking thru non-MFV: anarchy vs symmetry

Framework Hybrid Gauge Gravity Mediation

Consider gauge mediation, which is MFV, in the background of gravity mediation. related works (sleptons): Feng et al, 0712.0674; Nomura et al, 0712.2074, 0802.2582

* Can we probe the (always present) effects from gravity mediation with gauge mediation being the dominant effect of SUSY-breaking ?

* Is the model viable, or, what are the current flavor constraints?

Hybrid Gauge-Gravity Mediation:Intro

Let X_{Q_L} be the flavor structure of gravity-mediated squark masses:

$$M_{\tilde{Q}}^2(m_Z) \sim \tilde{m}_Q^2(r_3 \mathbf{1} + c_u Y_u Y_u^{\dagger} + c_d Y_d Y_d^{\dagger} + r X_{Q_L})$$

Flavor observables probe off-diagonals $\sim r/r_3 X_{Q_L}$, i.e., the flavor structure and the separation between the Planck and the messenger scale.

Gudrun Hiller

Hvbrid Gauge-Gravity Mediation: Scales

* MSSM-RGE-factor for soft squark masses $\tilde{m}^2(m_Z) = r_3 \tilde{m}^2(m_{mess})$ $r_3 = r_3(m_M) = 1 + \frac{8}{3\pi} \left(\int_{\ln(m_Z)}^{\ln(m_M)} dt \frac{\alpha_3^3(t)}{\alpha_3^2(m_M)} \right) \frac{M_3^2(m_M)}{\tilde{m}^2(m_M)};$ $\frac{M_3^2(m_M)}{\tilde{m}_{12}^2(m_M)} = \frac{3}{8} N_M + \mathcal{O}\left[\left(\frac{\alpha_i}{\alpha_3} \right)^2 \right], i = 1, 2, \text{ for } q = Q, U, D$ $r_3 \gtrsim 1 \text{ (mGMSB)}$ * Ratio of soft masses $r = \tilde{m}_{gravity}^2 / \tilde{m}_{gauge}^2$ $r \sim \left(\frac{m_M}{m_{\text{Pl}}} \right)^2 \left(\frac{4\pi}{\alpha_3(m_M)} \right)^2 \frac{3}{8} \frac{1}{N_M}$ (mGMSB; highest F-term couples to gauge mediation) * Soft terms with flavor at the messenger scale m_M :

Squark mass-squared terms:

$$M_{\tilde{Q}_{L}}^{2}(m_{M}) = \tilde{m}^{2}(\mathbf{1} + rX_{Q_{L}}),$$

$$M_{\tilde{D}_{R}}^{2}(m_{M}) = \tilde{m}^{2}(\mathbf{1} + rX_{D_{R}}),$$

$$M_{\tilde{U}_{R}}^{2}(m_{M}) = \tilde{m}^{2}(\mathbf{1} + rX_{U_{R}}).$$

A-terms:

$$A^{u}(m_{M}) = \tilde{m}\sqrt{r} Z_{A_{u}},$$
$$A^{d}(m_{M}) = \tilde{m}\sqrt{r} Z_{A_{d}}.$$

$$M^2(m_M) = \tilde{m}^2(\mathbf{1} + rX), \quad A(m_M) = \tilde{m}\sqrt{r} Z.$$

anarchy (An): $X_{ij} \sim \mathcal{O}(1)$ (no accidental cancellations)

structure (FN): Froggatt-Nielsen flavor symmetry; responsible also for the Yukawas.

X	Z	observable 1	observable 2	• • •
FN	FN			
An	FN			
An	An			

* Froggatt-Nielson-terms with V_{ij} : CKM, m_{q_i} : quark masses

$$(X_{q_{L,R}})_{ii} \sim 1, \quad (X_{q_L})_{ij} \sim |V_{ij}|, \quad (X_{q_R})_{ij} \sim \frac{m_{q_i}/m_{q_j}}{|V_{ij}|} \quad (i < j), \ q = U, D.$$

A-terms:

$$(Z_{A_q})_{ij} \sim Y_{ij}^q \sim V_{ij} m_{q_j} / v_q.$$

As in anarchy, soft terms fixed up to order one, in general complex numbers.

Analytical solution to MSSM-RG up to order one numbers (in flavor basis)

$$M_{\tilde{Q}_{L}}^{2}(m_{Z}) \sim \tilde{m}^{2}(r_{3}\mathbf{1} + c_{u}Y_{u}Y_{u}^{\dagger} + c_{d}Y_{d}Y_{d}^{\dagger} + rX_{Q_{L}} + rZ_{A_{u}}Z_{A_{u}}^{\dagger} + rZ_{A_{d}}Z_{A_{d}}^{\dagger}),$$

(in basis with diagonal quark mass matrices and gluino couplings)

$$(\delta_{i3}^{d})_{LL} \sim \frac{1}{r_3} \max\{r(X_{d_L} + Z_{A_u}Z_{A_u}^{\dagger} + Z_{A_d}Z_{A_d}^{\dagger})_{i3}, c_u y_t^2 | V_{tb} V_{ti}^* | \},$$

$$(\delta_{ij}^{u})_{LR} \sim (Z_{A_u})_{ij} \sqrt{r} v_u / (r_3 \tilde{m}).$$
 etc.

Ready for phenomenology!

Hybrid Gauge-Gravity Mediation, Predictions

The model parameters are: scale separation r/r_3 and flavor factors X, Z

(+GMSB)

I. Both X,Z follow the FN symmetry

Strongest bound from $K - \bar{K}$ -mixing: $\langle \delta_{12}^d \rangle \sim r/r_3 \sqrt{m_d/m_s}$ $r/r_3 \lesssim 0.01 - 0.03$.

Charm mixing suppressed: $\langle \delta_{12}^u \rangle \sim r/r_3 \sqrt{m_u/m_c}$

Both X,Z follow the FN symmetry; Predictions

* Strongest bound from $K - \overline{K}$ -mixing: $r/r_3 \lesssim 0.01 - 0.03$.

For number of messenger $N_M = 1$ (upper) and $N_M = 3$ (lower curve).

* $m_M \lesssim m_{Pl}/10^3$ for $N_M = 1$ (mGMSB; highest F-term couples to gauge mediation).

Both X,Z follow the FN symmetry;B, D-mixing

Upper two curves for $\tan \beta = 30$ and $m_{A^0} = 200$ GeV.

* B_d (solid), B_s (dashed): Effects in mixing of order ten percent if $\tan \beta$ is large, otherwise one percent.

* *D*-mixing: $|M_{12}^{\text{susy}}/M_{12}^{\text{exp}}| \lesssim 5\%$ (order 1 in different flavor model possible).

Hybrid Gauge-Gravity Mediation, Predictions II

The model parameters are: scale separation r/r_3 and flavor factors X, Z

(+GMSB)

II. X ~ O(1)anarchical, Z (A-terms) follow FN symmetry Strongest bound from $K - \bar{K}$ -mixing: $\langle \delta_{12}^d \rangle \sim r/r_3$ $r/r_3 \lesssim 0.002 - 0.006$.

Charm mixing order one: $\langle \delta_{12}^u \rangle \sim r/r_3$

Hybrid Gauge-Gravity Mediation, Predictions III

The model parameters are: scale separation r/r_3 and flavor factors X, Z

(+GMSB)

III. Full anarchy $X, Z \sim O(1)$ anarchical

Strongest bound from neutron EDM: $(\delta_{11}^u)_{LR} \sim \sqrt{r}v \sin\beta/(r_3 \tilde{m})$ $r/r_3 \lesssim 10^{-7}$.

Flavor physics quasi MFV-like.

For number of messengers $N_M = 1$ (upper) and $N_M = 3$ (middle) and $N_M = 10$ (lower curve); (mGMSB; highest F-term couples to gauge mediation).

- * black (FN), green (X: An, Z:FN) $m_M \lesssim m_{Pl}/10^3$ for $N_M = 1$.
- * pink (full anarchy/no structure) $m_M \lesssim m_{Pl}/10^5$ for $N_M = 1$.

The maximal size of possible effects in the mixing of B_d , B_s and D^0 for low $\tan \beta$ (large $\tan \beta$) and the neutron EDM:

X	Z	B_d	B_s	D^0	d_n
FN	FN	0.002 (0.10)	0.005 (0.13)	0.03	0.02
An	FN	0.007 (0.36)	0.002 (0.05)	$\mathcal{O}(1)$	0.01
An	An	$2 \cdot 10^{-4}$	$5\cdot 10^{-4}$	$\mathcal{O}(10^{-10})$	1

- We considered the effects of gravity-induced SUSY-breaking within gauge mediation. The model is a viable non-MFV scenario if the separation between the Planck and the messenger scale is sufficiently large.
- Given a model of flavor at the Planck scale, the hybrid gauge-gravity model is predictive, and can be tested with precision flavor and CP experiments.
- The different flavor realizations lead to distinct pattern.

... of new, rare and possibly beautiful, perhaps strange and eventually charming physics ...

HAPPY BIRTHDAY DANIEL