

Why discrete groups? ... Theory of flavour?

 Is the mechanism linked with the TeV-scale? (SM suggests that in a way: why m_t ~ Λ_{EW} ?)

* some confusion (D)-groups, reemphasized Ludl'09, argue (D)-groups embedded in Δ (6n²) Fischbacher RZ'09

Tetrahedral group $\cong A_4$

 4 corners, fix one e.g. 4 120°-roation: (4)(234) & (4)(243) = 8

 3 opposite edges with 180°-roation: (12)(34)

 identity

 elements

 \Rightarrow T \cong **A**₄ (even four permutation) = $\Delta(12)$

- Algebraic def: S²=1, T³=1, (ST)³=1
- Irreps: $|A_4| = 4!/2 = |\mathbf{1}|^2 + |\mathbf{1}'|^2 + |\mathbf{\overline{1}'}|^2 + |\mathbf{3}|^2$
- Example Kronecker product: denote: $\mathbf{3} \sim (x_{1,}x_{2,}x_{3}) \& \mathbf{3} \sim (y_{1,}y_{2,}y_{3})$; $\mathbf{3} \times \mathbf{3} = \mathbf{I} + \mathbf{I'} + \mathbf{J'} + \mathbf{3}_{s} + \mathbf{3}_{a}$ $\mathbf{I'} \sim (\omega^{2} \times_{1} y_{1,} \omega \times_{2} y_{2,} \times_{3} y_{3}) \qquad \omega = \exp(2\pi i/3)$ $T: \mathbf{I'} \rightarrow \omega^{2} \mathbf{I'}$

A4 in model-building

Model building 70' Tri-bi-maximal mixing '00

Connection? ... they were just first in line

A₄ quark sector in the '70

Wyler'79

a,b,c index family-symmetry Iⁿ invariant (constant tensor)

Not much known about 3rd generation (basically m_b) -- $\Theta_c \sim (m_d/m_s)^{1/2}$ Cabibbo universality

 $\mathcal{L}_{\text{Yuk}} \sim \sum_{n} (I^n)_{abc} \bar{Q}^a_L D^b_R H^c$ Assume:

Need at least two invariants (o/w $m_d/m_u = m_s/m_c$) -- $3^* \times 3 = 2 \times ...$ (not simply reducible)

- **A**₄ candidate with low order $(3 \times 3 = 2 \times 3 + ...) \Rightarrow 2$ invariants $\Rightarrow 2$ Yukawas (instead of 3)
- Work out (m_d, m_s, m_b) $\langle H \rangle = (v, v, v_3)$ with $v \langle v_3 \rangle$ (\Rightarrow Higgs potential add. family singlet) third mass adjusting the 2 Yukawas

Results:

- Cabibbo universality
- $|V_{ub}| / |V_{cb}| \sim 10$ (reversed hierarchy)
- (not known 79) 2 Yukawa & 3 masses \rightarrow relation: $m_d m_s / m_b^2 = m_u m_c / m_t^2 \Rightarrow m_t \approx I 5 GeV$

Tri-bi-maximal mixing & A_4 or rather S_4

Data suggests (not exclude):

- Neutrino sector: 'know' mixing -- masses less known $U_{\text{TB}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & +1/\sqrt{2} \end{pmatrix}$
- Go into basis leptons are diagonal

٠

Harrison, Perskins, Scott '99'02

$$M_{\nu} = M_{\text{TB}}^{\nu} \equiv U_{\text{TB}} \operatorname{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}) U_{\text{TB}}^T$$
$$M_l = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$$

-
$$AM_{\nu}A^{\dagger} = M_{\nu}$$
 for $A \in \mathbb{Z}_2 \times \mathbb{Z}_2$ generated S, U

- $AM_lA^{\dagger} = M_l$ for $A \in \mathbf{Z}_3$ generated by T

- The three generators S,T,U define S₄ (and not A₄... but was a good start)
 Suggests (original) family symmetry S₄ (or any group containing S₄ e.g. PSL(2,7) ...)
- Model building **flavon** ϕ_T with T-invariant VEV, Frogatt-Nielsen etc ...

$$\mathcal{L}_{\mathrm{YUK}}^L \sim \Psi(\phi_T + \phi_0) \Psi^c$$

Minimal Flavour Violation

Is there something (very) special about the Yukawa matrices?

Minimal Flavour Violation

- Yukawa = 0 <u>continuous</u> global symmetry: $G_F = U(3)^5 = G_q \times G_1$, $G_q = U(3)_Q \times U(3)_{UR} \times U(3)_{DR}$ Yukawa $\neq 0$ breaks down to: $G_q = U(3)_q^3 \rightarrow U(1)_{Baryon}$
- Let **Yukawa** formally transform as $Y_D \sim (3^*, 1, 3)_{Gq} \& Y_U \sim (3^*, 3, 1)_{Gq}$

MFV: effective field theory invariant under global G_F (criterion of naturalness applied coefficient O(1))

A few remarks on MFV

• Restricts the number of operators: (denote: D = (d,s,b))

$$\begin{array}{ll} & O^{\Delta F=1'} = (\bar{D}_L Y_U Y_U^{\dagger} Y_D \, \sigma \cdot F D_R) & b \to s \gamma \text{ -type} \\ & \overset{d}{} \gamma_{\textit{namics}} \text{without} & O^{\Delta F=1} = (\bar{D}_L Y_U Y_U^{\dagger} D_L) \cdot \bar{D}_L D_L & B \to K \pi \pi \\ & O^{\Delta F=2} = (\bar{D}_L Y_U Y_U^{\dagger} D_L)^2 & B_d \to \bar{B}_d \text{ -type} \end{array}$$

- \Rightarrow **correlations**: $b \rightarrow s$, $b \rightarrow d$, $s \rightarrow d$ transitions e.g. $\Delta M_d / \Delta M_s$ as in SM
- Is there still room for large effects:? Yes in certain channels e.g. $B \rightarrow II$ -- enhancement due to large tan $\beta = v_u / v_d$
- SUSY & MFV make proton long lived! No need for R-parity!
- No model of MFV (... seems as hard as creating a **Theory of Flavour**)
- MFV is also a language -- you can compare your BSM-flavour physics to MFV

If we take it beyond that

Nikoladitis & Smith '07

(partly skip)

Consequences of spurious Goldstone bosons

- If G_q-symmetry SSB by Yukawa's $\langle Y_{U/D} \rangle \neq 0 \Rightarrow 3x8 + 2 = 26$ (massless) Goldstone bosons
- Mid 70's 80's study breaking of continuous family symmetries -- dubbed Goldstone modes familons

There are (plenty) discrete subgroups very good -- end of the day?

By going to a discrete symmetry

I. Get rid of familons (goldstone bosons)

2. Reduce symmetry \Rightarrow new flavour structure (dangerous?)

Is there room for a TeV-scale dMFV-scenario?

Formulation: discrete Minimal Flavour Violation (dMFV)

Fischbacher RZ 2008 PRD79

I.
$$G_q \rightarrow D_q = D3_Q \times D3_{UR} \times D3_{DR}$$
D3 \subset SU(3), not discuss U(1)'s cold be Z_n 2. Specify the 3D irrep of D33. (possibly) Yukawa expansion $Y \rightarrow KY$ $K \leq I$

• Model independent approach: ⇒ study of **invariants** (~ effective operators)

$$\mathcal{L}^{\text{eff}} \sim \sum_{n} \frac{c_n}{\Lambda^{\dim(\mathcal{I}_n)-4}} \mathcal{I}_n(u, d, Y_U, Y_D) + h.c.$$

- Cutting a long story short: new invariants = non-MFV transitions
 - I. New invariants (typically) \Rightarrow anarchic flavour transitions
 - 2. Moreover: **Yukawas** (modulo CKM) diagonalyzed via G_q If we break it down to D_q (\Rightarrow more observable mixing angels!)

* $\kappa \approx I$ non-linear MFV (σ -model ... Feldmann, Mannel '08, Kagan et al '09) $\kappa \ll I$ linear MFV

Invariants Let **A**, **B**, **C**, ... be irreps of some group then $\mathbf{A} \times \mathbf{B} \times \mathbf{C} \times ... = \mathbf{n} \mathbf{I} + ...$ **n:** Number of invariants = Number times I appears in (follows from $\mathbf{v} \times \mathbf{v}^* = |\mathbf{I} + \Leftrightarrow \mathbf{v}$ irrep) Denote tensor n **3** and m **3**^{*} indices by $T^{(m,n)} = (d, s, b)_L \in T^{(1,0)}$, $\Delta = Y_U^{\dagger}Y_U \in T^{(1,1)}$ dMFV MFV $\Delta F = 1' \qquad \begin{pmatrix} \mathcal{I}_n^{(2,2)} = (\mathcal{I}_n)^{ab}{}_{rs} \left(\bar{D}^r \Delta_a {}^s D_b \right) & (\bar{D}_L \Delta_U Y_D \sigma \cdot F D_R) \\ \mathcal{I}_n^{(4,4)} = (\mathcal{I}_n)^{abcd}{}_{rstu} \left(\bar{D}^r \Delta_a {}^s D_b \right) \left(\bar{D}^t \Delta_c {}^u D_d \right) & (\bar{D}_L \Delta_U D_L)^2 \end{cases}$ Q: Are there SU(3) subgroups with no new a: $I^{(4,4)}$ b: $I^{(2,2)}$ -invariants?

*assuming DUR indices can be contracted

.... results on invariants:

- a: **no** (no discrete SU(3) subgroups no new $I^{(4,4)}$ -invariants!)
- b: **yes** (are discrete SU(3) subgroups no new $I^{(2,2)}$ -invariants!)

group	order	pairs $(3, \bar{3})$	$\mathcal{I}^{(2,2)}$	$\mathcal{I}^{(3,3)}$	$\mathcal{I}^{(4,4)}$
SU(3)	∞	1	2	6	23
$\Sigma(360arphi)$	1080	2	2	6	28
$\Sigma(216\varphi)$	648	3	2	7	40
$\Sigma(210\varphi)$	168	1	2	7	44
$\Sigma(72arphi)$	216	4	2	11	92

• Show: absence 27-dim irrep \Rightarrow new $I^{(4,4)}$ -invariants (c.f. backup-slide)

absence 8-dim irrep \Rightarrow new $I^{(2,2)}$ --invariants

Q: Does this mean there's no TeV-scale dMFV?

Have to refine notion of model independence.

The $\Delta F=2$ generation mechanism has to be reflected upon.

TeV-scale dMFV scenario

"family reducability" is sufficient property for "TeV-scale dMFV scenario" for Dq:

 $\Sigma(168)$, $\Sigma(72\varphi)$, $\Sigma(216\varphi)$ and $\Sigma(360\varphi)$

Dangerous invariants factorize: $I^{(4,4)} \rightarrow I^{(2,2)} I^{(2,2)}$

• TeV-scale? Recall: $C_{SM}/C_{MFV} \ge (0.5 \text{ TeV}/m_W)^2$ -- Yukawa expansion: what κ bound $C_{MFV} \sim C_{dMFV}$?

lessentially) each vertex is P_q-invariant !

most suitable candidate Σ(360φ) only *I*^(4,4) new invariants
 MFV: s → d O(λ⁵) strong suppression, ΔS = 2 real part O(λ¹⁰)
 dMFV: s → d O(λ) (from examples ..."worst case")

 $\Rightarrow \mathbf{MFV}: \mathbf{dMFV} = \lambda^{10}: \lambda^{6} \, \mathbf{\kappa}^{4} \text{ equal } \mathbf{\kappa}_{\Sigma(360\varphi)} \approx \lambda \approx 0.2$

• sufficient but not necessary! Consider R-parity violating MSSM Can convince yourself that not lead to "dangerous" non-fac. **I**^(4,4)

Epilogue

- Discrete groups are fun (and have potential)
- Would be good to work out in more generality how breaking patterns $G_{cont} \rightarrow G_{discrete} \rightarrow G'_{discrete}$ works out (systematically)
- TeV-scale dMFV scenario possible for crystal-like groups $\Sigma(360\phi)$, $\Sigma(216\phi)$, $\Sigma(72\phi)$, $\Sigma(168)$ (with moderate ($\kappa \sim O(0.2)$) possible (model-independent))

• Happy Birthday greetings from Bob Shrock, Pasquale Di Bari,

Backup Slides

Necessarily new I^(4,4)-invariants !!

• What level?: Kronecker product decompose any different than SU(3) !

Look at:

$$\mathcal{I}_{n}^{(4,4)} = (\mathcal{I}_{n})_{rstu}^{abcd} \left(\bar{D}^{r} \Delta_{a}^{s} D_{b} \right) \left(\bar{D}^{t} \Delta_{c}^{u} D_{d} \right)$$

 $SU(3): (\mathbf{3} \times \mathbf{3}^{*} \times \mathbf{3} \times \mathbf{3}^{*})_{S} \times (\mathbf{3} \times \mathbf{3}^{*} \times \mathbf{3} \times \mathbf{3}^{*})_{S} =$
 $(\mathbf{8} \times \mathbf{8})_{S} \times (\mathbf{8} \times \mathbf{8})_{S} + ... =$
 $(\mathbf{I} + \mathbf{8} + \mathbf{27}) \times (\mathbf{I} + \mathbf{8} + \mathbf{27}) + ...$

 \Rightarrow if $D_Q \subset SU(3)$ has no **27** \Rightarrow new $I^{(4,4)}$ invariants (new $\Delta F = 2$ structure)

• I. **Dihedral groups** $\Delta(3n^2)$, $\Delta(6n^2)$ max 3,6D irrep \Rightarrow out

 Crystallographic groups .. look at character tables reveals there is none (N.B. 27² = 729 almost saturates the largest group (3x360=1080) ...)