Discrete Groups and Flavour Physics

Roman Zwicky
(Southampton)

January 6-8 2010, Zurich
The rare and the beautiful -- Wylerfescht

Overview

Discrete groups -- discrete $\mathrm{SU}(3)$ subgroups

- A4 an example -- 79' model building
$02^{\prime} .$. tri-bi-mixing lepton sector

```
conceptual cut -- discrete groups link
```

- Discrete Minimal Flavour Violation

Why discrete groups? ... Theory of flavour?

- Can (discrete/continuous) family-symmetries explain them? Who gave us the Yukawa matrices?
- Is the mechanism linked with the TeV-scale?
 (SM suggests that in a way: why $\mathrm{m}_{\mathrm{t}} \sim \Lambda_{\mathrm{EW}}$?)

Def: discrete group = group with countable many elements

two facts (for general orientation):

- Any discrete group can be embedded into permutation group S_{n} (analogue manifold \& R^{n}) *
- Order \& irreducible representations (irreps): $|D|=\Sigma \mid$ irrep $\left.(D)\right|^{2} \quad \Rightarrow$ finite many of them

Which discrete groups are subgroups of SU(3)? 13 because of 3 famillies)

* 19th century used to be the definition (as opposed to abstract definition)

Discrete subgroups of $\mathrm{SU}(3)$

- Classified in a classic book

Analyzed further eightfold way
Miller, Dickson, Blichfeld ‘1916
Further analyzed (lattice ...) Bovier, Luling, Wyler '81 *
Rescrutinized tri-bi-hype
Luhn, Nasri Ramand., '06-08

Trihedral like: $\Delta\left(3 n^{2}\right) / \Delta\left(6 n^{2}\right)$

- $Z_{n} \times Z_{n} \rtimes Z_{3} / S_{3}$
- largest irreps 3/6-dim
- Analogue Dihedral group (chemistry) $\mathrm{Z}_{\mathrm{n}} \rtimes \mathrm{Z}_{2}$

Crystallographic groups, Σ

- finite many of them
- maximal subgroups
$\Sigma(168) \sim \operatorname{PSL}(2,7)$
$\Sigma(216 \varphi)$ hessian group
$\Sigma(360 \varphi)$
($\varphi=1,3$ related center $S U(3)$)
- used in lattice $\mathrm{SU}(3)_{\text {color }}$ discretizations ' 80

Tetrahedral group $\cong \mathrm{A}_{4}$

 3 opposite edges with 180°-roation: (12)(34) $=3$ identity
$\Rightarrow T \cong \mathbf{A}_{\mathbf{4}}$ (even four permutation) $=\Delta(12)$

- Algebraic def: $\quad S^{2}=I, T^{3}=I,(S T)^{3}=I$
- Irreps: $\quad\left|A_{4}\right|=4!/ 2=12=|1|^{2}+|I|^{2}+|\bar{I}|^{2}+|3|^{2}$
- Example Kronecker product:

$$
\text { denote: } \mathbf{3} \sim\left(x_{1}, x_{2}, x_{3}\right) \& \mathbf{3} \sim\left(y_{1}, y_{2}, y_{3}\right)
$$

$$
\begin{aligned}
& \mathbf{3} \times \mathbf{3}=\mathbf{I}+I \prime+T,+\mathbf{3}_{s}+\mathbf{3}_{\mathrm{a}} \\
& \boldsymbol{I} \sim\left(\omega^{2} x_{1} y_{1}, \omega x_{2} y_{2}, x_{3} y_{3}\right) \quad \omega=\exp (2 \pi i / 3) \\
& T: I^{\prime} \rightarrow \omega^{2} I
\end{aligned}
$$

A4 in model-building

Model building 70'
Tri-bi-maximal mixing '00

Connection? ... they were just first in line .

A_{4} quark sector in the ' 70

- Not much known about 3rd generation (basically m_{b}) -- $\boldsymbol{O c}_{\mathbf{c}} \sim\left(\mathbf{m}_{\mathbf{d}} / \mathbf{m}_{\mathbf{s}}\right)^{\mathbf{1 / 2}}$ Cabibbo universality a,b,c index family-symmetry

Assume:
 I^{n} invariant (constant tensor)

- Need at least two invariants $\left(0 / \mathrm{w} \mathrm{m}_{d} / \mathrm{m}_{u}=\mathrm{m}_{s} / \mathrm{m}_{\mathrm{c}}\right)-\mathbf{3}^{*} \times \mathbf{3}=2 \mathbf{X} \ldots$ (not simply reducible)
- \mathbf{A}_{4} candidate with low order $(\mathbf{3} \times \mathbf{3}=2 \mathbf{3}+..) \Rightarrow 2$ invariants $\Rightarrow 2$ Yukawas (instead of 3)
- Work out $\left(\mathrm{m}_{\mathrm{d}}, \mathrm{m}_{\mathrm{s}}, \mathrm{m}_{\mathrm{b}}\right) \quad<\mathrm{H}>=\left(\mathrm{v}, \mathrm{v}, \mathrm{v}_{3}\right)$ with $\mathrm{v} \ll \mathrm{v}_{3}$ (\Rightarrow Higgs potential add. family singlet) third mass adjusting the 2 Yukawas

Results:

- Cabibbo universality
- $\quad\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right| \sim 10$ (reversed hierarchy)
- 2 Yukawa \& 3 masses \rightarrow relation: $\mathrm{m}_{\mathrm{d}} \mathrm{m}_{\mathrm{s}} / \mathrm{m}_{\mathrm{b}}{ }^{2}=\mathrm{m}_{\mathrm{u}} \mathrm{m}_{\mathrm{c}} / \mathrm{m}_{\mathrm{t}}{ }^{2} \Rightarrow \mathrm{~m}_{\mathrm{t}} \approx 15 \mathrm{GeV}$

Tri-bi-maximal mixing \& A_{4} or rather S_{4}

Data suggests (not exclude):

- Neutrino sector: 'know’ mixing -- masses less known
- Go into basis leptons are diagonal

$$
U_{\mathrm{TB}}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & 1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
-1 / \sqrt{6} & 1 / \sqrt{3} & +1 / \sqrt{2}
\end{array}\right)
$$

$$
\begin{aligned}
M_{\nu} & =M_{\mathrm{TB}}^{\nu} \equiv U_{\mathrm{TB}} \operatorname{diag}\left(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}\right) U_{\mathrm{TB}}^{T} \\
M_{l} & =\operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right)
\end{aligned}
$$

- $A M_{\nu} A^{\dagger}=M_{\nu}$ for $A \in \mathbf{Z}_{2} \times \mathbf{Z}_{2}$ generated S, U
- $A M_{l} A^{\dagger}=M_{l}$ for $A \in \mathbf{Z}_{3}$ generated by T
- The three generators $\mathrm{S}, \mathrm{T}, \mathrm{U}$ define $\mathbf{S}_{\mathbf{4}}$ (and not $\mathrm{A}_{4} \ldots$...but was a good start)

Suggests (original) family symmetry S_{4} (or any group containing S_{4} e.g. PSL(2,7) ...)

- Model building flavon φ_{T} with T-invariantVEV, Frogatt-Nielsen etc ..

$$
\mathcal{L}_{\mathrm{YUK}}^{L} \sim \Psi\left(\phi_{T}+\phi_{0}\right) \Psi^{c}
$$

Minimal Flavour Violation

Is there something (very) special about the Yukawa matrices?

Minimal Flavour Violation

- Yukawa $=0$ continuous global symmetry: $\mathrm{G}_{\mathrm{F}}=\mathrm{U}(3)^{5}=\mathrm{G}_{\mathrm{q}} \times \mathrm{G}_{\mathrm{l}}$, Yukawa $\neq 0$ breaks down to:
$G_{q}=U(3) Q \times U(3)_{U R} \times U(3) D R$ $\mathrm{G}_{\mathrm{q}}=\mathrm{U}(3)_{\mathrm{q}}{ }^{3} \rightarrow \mathrm{U}(\mathrm{I})$ Baryon
- Let Yukawa formally transform as $\mathrm{Y}_{\mathrm{D}} \sim\left(3^{*}, \mathrm{I}, 3\right)_{\mathrm{Gq}}$ \& $\mathrm{Y}_{\mathrm{u}} \sim\left(3^{*}, 3, \mathrm{I}\right)_{\mathrm{Gq}}$

MFV: effective field theory invariant under global G_{F} (criterion of naturalness applied coefficient $O(I)$)

D’Ambrosio, Giudice, Isidori \& Strumia ‘02

- Yukawa's promoted to spurions
$<Y_{U / D}>\neq 0$ VEV breaks G_{q}
N.B. interpretation of symmetry breaking other options a) explicit(soft) breaking
b) anomalous breaking
* Add. assumption:

CP-invariance
No new Lorentz structure

A few remarks on MFV

- Restricts the number of operators: (denote: $D=(d, s, b)$)

$$
\begin{aligned}
& O^{\Delta F=1^{\prime}}=\left(\bar{D}_{L} Y_{U} Y_{U}^{\dagger} Y_{D} \sigma \cdot F D_{R}\right) \\
& b \rightarrow s \gamma \text {-type } \\
& O^{\Delta F=1}=\left(\bar{D}_{L} Y_{U} Y_{U}^{\dagger} D_{L}\right) \cdot \bar{D}_{L} D_{L} \\
& B \rightarrow K \pi \pi \\
& O^{\Delta F=2}=\left(\bar{D}_{L} Y_{U} Y_{U}^{\dagger} D_{L}\right)^{2} \\
& B_{d} \rightarrow \bar{B}_{d} \text {-type }
\end{aligned}
$$

- \Rightarrow correlations: $b \rightarrow s, b \rightarrow d, s \rightarrow d$ transitions e.g. $\Delta M_{d} / \Delta M_{s}$ as in $S M$
- Is there still room for large effects:? Yes in certain channels
 e.g. $B \rightarrow$ II -- enhancement due to large $\tan \beta=v_{u} / v_{d}$
- SUSY \& MFV make proton long lived! No need for R-parity!
- No model of MFV (... seems as hard as creating a Theory of Flavour)
- MFV is also a language -- you can compare your BSM-flavour physics to MFV

Consequences of spurious Goldstone bosons

- If $\mathrm{G}_{\mathrm{q} \text {-symmetry }}$ SSB by Yukawa's <Yu/D> $\neq 0 \Rightarrow 3 \times 8+2=26$ (massless) Goldstone bosons
- Mid 70's 80 's study breaking of continuous family symmetries -- dubbed Goldstone modes familons
- Physics should be the same:

	$\mathcal{L}^{\mathrm{eff}} \simeq \frac{1}{\Lambda_{F}}\left(\partial_{\mu} \phi_{F}\right)\left(\bar{s} \gamma_{\mu} d_{L}\right)+$
$\Phi_{\text {F }}$ weakly coupled (not detected)	$\mathrm{K}^{+} \rightarrow \pi^{+} \mathrm{VV}$ vs $\mathrm{K}^{+} \rightarrow \pi^{+} \Phi_{\mathrm{F}}$ $\Rightarrow \Lambda_{F}>10^{8} \mathrm{TeV}$ (infer from e.g. Feng et al '97)

- If $\Lambda_{F} \sim \Lambda_{\text {MFV }}$ flavour difficuly to detect

Ways out \quad| If flavour violation in soft-breaking terms |
| :--- |
| e.g. SUSY-GUT then $\Lambda_{F} \sim \Lambda_{\text {GUT }} . . \Lambda_{\text {MFV }} \sim \Lambda_{\text {SUSY }}$ |

- Discrete symmetry (no Goldstone modes)
- Gauge the symmetry (new massive gauge bosons)

Albrecht, Feldmann, Mannel 'announced'

There are (plenty) discrete subgroups very good -- end of the day?

By going to a discrete symmetry

I. Get rid of familons (goldstone bosons)
2. Reduce symmetry \Rightarrow new flavour structure (dangerous?)

Is there room for a TeV-scale dMFV-scenario?

Formulation: discrete Minimal Flavour Violation (dMFV)

Fischbacher RZ 2008 PRD79
I. $G_{q} \rightarrow D_{q}=\mathbf{D} \mathbf{3}_{\mathbf{Q}} \times \mathbf{D} \mathbf{3 U R} \times \mathbf{D} \mathbf{3}_{\mathbf{D R}} \quad \mathrm{D} 3 \subset \operatorname{SU}(3)$, not discuss $\mathrm{U}(\mathrm{I})$'s cold be Z_{n}
2. Specify the 3D irrep of D3
3. (possibly) Yukawa expansion
$\mathrm{Y} \rightarrow \mathrm{K} \mathrm{Y} \quad \mathrm{K} \leq \mathrm{I} *$

- Model independent approach: \Rightarrow study of invariants (~ effective operators)

$$
\mathcal{L}^{\mathrm{eff}} \sim \sum_{n} \frac{c_{n}}{\Lambda^{\operatorname{dim}\left(\mathcal{I}_{n}\right)-4}} \mathcal{I}_{n}\left(u, d, Y_{U}, Y_{D}\right)+\text { h.c. }
$$

- Cutting a long story short: new invariants = non-MFV transitions
I. New invariants (typically) \Rightarrow anarchic flavour transitions

2. Moreover: Yukawas (modulo CKM) diagonalyzed via G_{q} If we break it down to D_{q} (\Rightarrow more observable mixing angels!)

Invariants

Let $\mathbf{A}, \mathbf{B}, \mathbf{C}, \ldots$ be irreps of some group then $\mathbf{A} \times \mathbf{B} \times \mathbf{C} \times \ldots=\mathrm{n} \mathbf{I}+\ldots .$.
n: Number of invariants $=$ Number times \mathbf{I} appears in (follows from $\boldsymbol{V} \times \boldsymbol{V}^{\mathbf{*}}=\boldsymbol{I} \mathbf{I}+\ldots . . \Leftrightarrow \boldsymbol{V}$ irrep)

- Denote tensor n 3 and $\mathrm{m} \mathbf{3}^{*}$ indices by $\mathrm{T}^{(\mathrm{m}, \mathrm{n})} \quad \mathrm{D} \equiv(\mathrm{d}, \mathrm{s}, \mathrm{b}) \mathrm{L} \in \mathrm{T}^{(1,0)}, \Delta \equiv \mathrm{Y}^{\dagger} \mathrm{Y}^{\mathrm{Y}} \mathrm{u} \in \mathrm{T}^{(1, \mathrm{I})}$ * dMFV

MFV
$\Delta F=1^{\prime}$
$\Delta F=2$$\quad \begin{array}{ll}\mathcal{I}_{n}^{(2,2)}=\left(\mathcal{I}_{n}\right)^{a b}{ }_{r s}\left(\bar{D}^{r} \Delta_{a}{ }^{s} D_{b}\right) & \left(\bar{D}_{L} \Delta_{U} Y_{D} \sigma \cdot F D_{R}\right) \\ \mathcal{I}_{n}^{(4,4)}=\left(\mathcal{I}_{n}\right)^{a b c d}{ }_{r s t u}\left(\bar{D}^{r} \Delta_{a}{ }^{s} D_{b}\right)\left(\bar{D}^{t} \Delta_{c}{ }^{u} D_{d}\right) & \left(\bar{D}_{L} \Delta_{U} D_{L}\right)^{2}\end{array}$

Q: Are there SU(3) subgroups with no new a: I(4,4) b: I(2,2)-invariants?

.... results on invariants:

- a: no (no discrete $\operatorname{SU}(3)$ subgroups no new $\boldsymbol{I}^{(4,4)}$-invariants!)
- b: yes (are discrete $\operatorname{SU}(3)$ subgroups no new $\boldsymbol{I}^{(2,2)}$-invariants!)

group	order	pairs $(\mathbf{3}, \overline{\mathbf{3}})$	$\mathcal{I}^{(2,2)}$	$\mathcal{I}^{(3,3)}$	$\mathcal{I}^{(4,4)}$
$\mathrm{SU}(3)$	∞	1	2	6	23
$\Sigma(360 \varphi)$	1080	2	2	6	28
言					
$\Sigma(216 \varphi)$	648	3	2	7	40
$\Sigma(168)$	168	1	2	7	44
$\Sigma(72 \varphi)$	216	4	2	11	92

- Show: absence 27 -dim irrep \Rightarrow new $\boldsymbol{I}^{(4,4)}$-invariants (c.f. backup-slide)
absence 8 -dim irrep \Rightarrow new $\boldsymbol{I}^{(2,2) \text {-invariants }}$

Q: Does this mean there's no TeV-scale dMFV?

Have to refine notion of model independence.

The $\Delta F=2$ generation mechanism has to be reflected upon.

"Family (ir)reducible"

"family irreducible" $\boldsymbol{I}^{(4,4)}$

"family reducible" $\boldsymbol{I}^{(4,4)} \rightarrow \boldsymbol{I}^{(2,2)} \times \boldsymbol{I}^{(2,2)}$

- SM, R-parity conserving MSSM:

TeV-scale dMFV scenario

"family reducability" is sufficient property for "TeV-scale dMFV scenario" for D_{q} :

$$
\Sigma(168), \Sigma(72 \varphi), \Sigma(216 \varphi) \text { and } \Sigma(360 \varphi)
$$

Dangerous invariants factorize: $\boldsymbol{I}^{(4,4)} \rightarrow \boldsymbol{I}^{(2,2)} \boldsymbol{I}^{(2,2)}$

- TeV-scale? Recall: $\mathrm{C}_{\mathrm{sm}} / \mathrm{C}_{\mathrm{MFV}} \geq(0.5 \mathrm{TeV} / \mathrm{mw})^{2}$-- Yukawa expansion: what $\boldsymbol{\kappa}$ bound $\mathrm{C}_{\text {MFV }} \sim \mathrm{C}_{\mathrm{dmFV}}$?
- most suitable candidate $\Sigma(360 \varphi)$ only $\boldsymbol{I}^{(4,4)}$ new invariants

MFV: $s \rightarrow d O\left(\lambda^{5}\right)$ strong suppression, $\Delta S=2$ real part $O\left(\lambda^{10}\right)$
dMFV: $s \rightarrow d O(\lambda)$ (from examples .."worst case")
\Rightarrow MFV : dMFV $=\lambda^{10}: \lambda^{6} \mathbf{K}^{4}$ equal $\quad \boldsymbol{\kappa} \Sigma(360 \varphi) \approx \lambda \approx 0.2$

- sufficient but not necessary! Consider R-parity violating MSSM Can convince yourself that not lead to "dangerous" non-fac. $\boldsymbol{I}^{(4,4)}$

Epilogue

- Discrete groups are fun (and have potential)
- Would be good to work out in more generality how breaking patterns
$\mathrm{G}_{\text {cont }} \rightarrow \mathrm{G}_{\text {discrete }} \rightarrow \mathrm{G}^{\prime}{ }_{\text {discrete }}$ works out (systematically)
- TeV-scale dMFV scenario possible for crystal-like groups $\Sigma(360 \varphi), \Sigma(216 \varphi), \Sigma(72 \varphi), \Sigma(168)$ (with moderate ($\mathbf{K} \sim \mathbf{O}(0.2)$) possible (model-independent))
- Happy Birthdaygreetings from Bob Shrock, Pasquale Di Bari ,.....

Backup Slides

Necessarily new $\boldsymbol{I}^{(4,4)}$-invariants !!

- What level?: Kronecker product decompose any different than $\operatorname{SU}(3)$!

Look at: $\quad \mathcal{I}_{n}^{(4,4)}=\left(\mathcal{I}_{n}\right)_{\text {rstu }}^{a b c d}\left(\bar{D}^{r} \Delta_{a}^{s} D_{b}\right)\left(\bar{D}^{t} \Delta_{c}{ }^{u} D_{d}\right)$

- $S U(3):\left(3 \times \mathbf{3}^{*} \times \mathbf{3} \times \mathbf{3}^{*}\right)_{S} \times\left(\mathbf{3} \times \mathbf{3}^{*} \times \mathbf{3} \times \mathbf{3}^{*}\right)_{S}=$ $(8 \times 8)_{s} \times(8 \times 8)_{s}+\ldots=$ $(1+8+27) \times(I+8+27)+\ldots$
\Rightarrow if $\mathrm{D}_{\mathrm{Q}} \subset \mathrm{SU}(3)$ has no $\mathbf{2 7} \Rightarrow$ new $\boldsymbol{I}^{(4,4)}$ invariants (new $\Delta \mathrm{F}=2$ structure)
- I. Dihedral groups $\Delta\left(3 n^{2}\right), \Delta\left(6 n^{2}\right) \max 3,6 \mathrm{D}$ irrep \Rightarrow out

2. Crystallographic groups .. look at character tables reveals there is none (N.B. $27^{2}=729$ almost saturates the largest group $(3 \times 360=1080)$...)
