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FIG. 1: A typical event with jet production at the LHC.

has to face when trying to derive a factorization theo-
rem in this situation. First, experimentally the number
and properties of the final-state jets are determined with
a jet algorithm. Second, to enhance the ratio of signal
over background, the experimental analyses have to ap-
ply kinematic selection cuts. Third, in addition to the
jets produced by the hard interaction, there is soft ra-
diation everywhere (which is part of what is sometimes
called the “underlying event”). Fourth, a (large) fraction
of the total energy in the final state is deposited near the
beam axes at high rapidities. An important component
of this radiation can contribute to measurements, and
when it does, it cannot be neglected in the factorization.
In this paper we focus on the last three items. Methods
for including jet algorithms in factorization have been
studied in Refs. [8, 16, 17]

To allow a clean theoretical description, the observ-
ables used to constrain the events must be chosen care-
fully such that they are infrared safe and sensitive to
emissions everywhere in phase space. Observables satis-
fying these criteria for hadron colliders have been clas-
sified and studied in Refs. [18, 19], and are referred
to as global event shapes. (Issues related to non-
global observables have been discussed for example in
Refs. [20, 21, 22, 23].) For our analysis we use a very
simple example of such an observable, constructed as fol-
lows. We define two hemispheres, a and b, orthogonal
to the beam axis and two unit lightlike vectors na and
nb along the beam axis pointing into each hemisphere.
Taking the beam axis along the z direction, hemisphere
a is defined as z > 0 with nµ

a = (1, 0, 0, 1), and hemi-
sphere b as z < 0 with nµ

b = (1, 0, 0,−1). We now di-
vide the total momentum pX of the hadronic final state
into the contributions from particles in each hemisphere,
pX = pXa

+ pXb
. Next, we remove the momenta pJ of

all jets (defined by an appropriate jet algorithm) in each
hemisphere. Of the remaining hemisphere momenta, we
measure the components B+

a and B+
b defined by

B+
a = na ·

(
pXa

−
∑

J∈a

pJ

)
, (2)

and analogously for B+
b . Because of the dot product with

na or nb, energetic particles near the beam axes only give
small contributions to B+

a or B+
b . In particular, any con-

tributions from particles at very large rapidities outside
the detector reach, including the remnant of unscattered
partons in the proton, are negligible. All observed par-
ticles contribute either to B+

a , B+
b , or a jet momentum,

so we are ensured that we cover all of phase space. De-
manding that B+

a,b are small restricts the radiation be-
tween central jets, only allowing highly energetic particles
either within these jets or inside jets along the beam di-
rections labeled “Jet a” and “Jet b” in Fig. 1. Hence,
measuring and constraining B+

a,b provides a theoretically
clean method to control the remaining particles in the
hadronic final state. This ensures that observables based
on the large momenta of hard jets or leptons are clean,
safe from uncontrolled hadronic effects.

In this paper, we consider the simplest situation where
the above setup can be realized, allowing us to explore the
implications of restrictions on the hadronic final state.
We prove a factorization theorem for Drell-Yan produc-
tion pp → X!+!− where X is allowed to have hard jets
close to the beam, but no hard central jets. We call this
“isolated Drell-Yan”. Our proof of factorization uses the
soft-collinear effective theory (SCET) [24, 25, 26, 27] plus
additional arguments to rule out possible Glauber effects
based in part on Refs. [28, 29]. Although we focus our dis-
cussion on Drell-Yan, our factorization theorem applies
to processes pp → XL, were the lepton pair is replaced
by other non-strongly interacting particles, such as Higgs
or Z ′ decaying non-hadronically. Though our analysis is
only rigorous for pp → XL, we also briefly discuss what
the extended factorization formula may look like for pro-
cesses with additional identified jets in the final state.

Our main result is to show that process-independent
“beam functions”, Bi(t, x) with i = {g, u, ū, d, . . .}, are
required to properly describe the initial state. For the
usual PDFs in Drell-Yan production appearing in Eq. (1),
the hadronic final state X is treated fully inclusively, and
the effects of initial- and final-state soft radiation cancel
out [1]. With restrictions on X , the effects of soft ra-
diation can no longer cancel. Generically, by restricting
X one performs an indirect measurement of the proton
prior to the hard collision. At this point, the proton is
resolved into a colliding hard parton inside a cloud of
collinear and soft radiation. The proper description of
this initial-state jet is given by a beam function in con-
junction with an appropriate soft function describing the
soft radiation in the event.

One might worry that the collision of partons inside
initial-state jets rather than partons inside protons could
drastically change the physical picture. Although the
changes are not as dramatic, they have important im-
plications. The beam function can be computed in an
operator product expansion, giving

Bi(t, ξ, µB) = δ(t) fi(ξ, µB) + O[αs(µB)] , (3)

where µB is an intermediate perturbative scale and t is an


