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Soft-Collinear Effective Theory

✤ An effective theory for processes for processes with energetic 
particles.

✤ Expansion in
✤ Sudakov resummation

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002
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Soft-Collinear Factorization
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From B-decays to collider applications
B-decays Collider processes

1-jet processes processes: 
B → Xu l ν, B → Xs γ,  
B → γ l ν al. et Wyler 

several jets, i.e. 
directions of large 
momentum flow

hadronically inclusive 
rates

 jet algorithms, event 
shapes, treatment of the 

beam in hadronic 
collisions

power corrections,
hadronic input

large energies, 
power corrections 

less of an issue
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Jets in SCET
✤ Several papers in the last few months on jet observables in e+ e−

✤ Cheung, Luke and Zuberi 0910.2479: evaluation of e+ e− → qqg in 
SCET for JADE, Sterman-Weinberg and kT-algortihms

✤ Jouttenus 0912.5509: one-loop jet function for Sterman-Weinberg jet 
definition

✤ S. Ellis et al. 0912.0262, 1001.0014: one-loop jet and soft functions 
for cone and recombination algorithms. NLL calculation of 3-jet 
shapes.

✤ Issues:
✤ Care needs to be taken to avoid double counting: a collinear 

particle becomes soft if the energy become small.
✤ Non-global log’s: for some observables soft function may contain 

large log’s.
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Beam jets Stewart, Tackmann, Waalewijn 0910.0467

✤ In hadronic collisions the incoming hadrons (and associated outgoing 
remants) should be treated as jets.
✤ corresponds to initial state shower
✤ soft emissions from initial state are calculable part of what’s usually 

called the underlying event
✤ Stewart et al. factorize hadron beam jet function Bi into PDFs times a 

perturbatively calculable coefficient Iij.
✤ Application: pT resummation for Higgs Mantry and Petriello ’09
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FIG. 5: Evolution of the initial state. Starting from the low scale µΛ, the incoming proton is described by the x-dependent
evolution of the PDFs, which redistributes the total momentum of the proton between its constituents. At the scale µB , the
proton is probed by measuring the radiation in the final state and breaks apart. This is the scale where the PDFs are evaluated
and the x-dependent evolution stops. Above µB , the proton has ceased to exist, and the initial state behaves like an incoming
jet, whose evolution is governed by the virtuality t of the off-shell spacelike parton that eventually enters the hard interaction
at the scale µH .

modified by virtual radiation and by the emission of real
radiation, which forms a jet. The evolution in this region
no longer depends on ξ, but instead on the virtuality t.
This evolution occurs with fixed x and fixed parton type
i, via the beam function RGE

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γB

i (t − t′, µ)Bi(t
′, x, µ) . (36)

This result for initial-state jet evolution has the same
structure as the evolution for final-state jets. In fact, the
anomalous dimension γB

q is identical to that for the quark
jet function to all orders in perturbation theory [50]. We
discuss this correspondence further in Sec. III.

The effect of initial-state real and virtual radiation is
described by the perturbatively calculable Wilson coef-
ficients Iij(t, x/ξ, µ) at the scale µ = µB. They encode
several physical effects. The virtual loop corrections con-
tribute to the Iii and modify the effective strength of the
various partons. If the radiation is real, it has physical
timelike momentum. Hence, it pushes the active parton
in the jet off shell with spacelike virtuality −t < 0 and
reduces its light-cone momentum fraction from ξ to x.

In addition, the real radiation can change the iden-
tity of the colliding parton, giving rise to the sum over
j in Eq. (34). For example, an incoming quark can ra-
diate an energetic gluon which enters the hard interac-
tion, while the quark itself goes into the final state. This
gives a contribution of the quark PDF to the gluon beam
function through Igq. Similarly, an incoming gluon can
pair-produce, with the quark participating in the hard
interaction and the antiquark going into the final state.
This gives a contribution of the gluon PDF to the quark
beam function through Iqg. There are also of course real
radiation contributions to the diagonal terms, Iqq and
Igg, where the parton in the PDF and the parton partic-
ipating in the hard interaction have the same identity.

At lowest order in perturbation theory, the parton

taken out of the proton directly enters the hard inter-
action without emitting radiation,

Itree
ij

(
t,

x

ξ
, µ

)
= δij δ(t) δ

(
1 −

x

ξ

)
. (37)

Thus at tree level, the beam function reduces to the PDF

Btree
i (t, x, µ) = δ(t) fi(x, µ) . (38)

Beyond tree level, Iij(t, x/ξ, µ) can be determined per-
turbatively as discussed in more detail in Sec. III, where
we give precise field-theoretic definitions of the beam
functions and quote the one-loop results for Iqq and Iqg.

Interestingly, in the threshold factorization theorem
Eq. (12), cross terms between quark and gluon PDFs
are power suppressed, so the gluon PDF does not con-
tribute at leading order. In the inclusive case Eq. (9),
such cross terms are leading order in the power counting.
For isolated Drell-Yan, there are no cross terms between
quark and gluon beam functions, but there are leading-
order cross terms between different PDFs, which appear
via the contributions of different PDFs to a given beam
function in Eq. (34). Thus, the isolated case is again
in-between the inclusive and threshold cases.

D. Comparison with Initial-State Parton Shower

The physical situation associated with the beam evo-
lution has an interesting correspondence with that of
initial-state parton showers. As pictured in the region
between µB and µH in Fig. 5, the parton in the beam
function evolves forward in time while emitting a shower
of radiation into the final state governed by the anoma-
lous dimension γB

i (t − t′, µ) in Eq. (36). This equation
has no parton mixing. Each emission by the radiating
parton increases the magnitude of its spacelike virtuality
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so B+
a has a tighter constraint than B+

b , as desired. If we

simply replace B̂ by B+
a /ωb + B+

b /ωa, the soft function
analogous to SB in Eq. (26) will depend on the combina-
tion (ωak+

a + ωbk
+
b )/Q2.

However, we should also adjust the hemispheres them-
selves to take into account the significant boost of the
partonic center-of-mass frame. We therefore define a
generalized hemisphere a as y > Y and hemisphere b
as y < Y , as shown in Fig. 4. The corresponding total
hemisphere momenta are denoted as B+

a,b(Y ) and the soft

hemisphere momenta as k+
a,b(Y ). The original definitions

in Fig. 3 correspond to B+
a,b(0) ≡ B+

a,b and k+
a,b(0) ≡ k+

a,b.

The generalization of B̂ is given by the boost-invariant
combination

τB =
ωaB+

a (Y ) + ωbB
+
b (Y )

q2
. (28)

With the generalized definition of the hemispheres,
B+

a,b(Y ) and ωa,b transform under a boost by y in the
na direction as

B+
a (Y ) → B+′

a (Y + y) = e−yB+
a (Y ) ,

B+
b (Y ) → B+′

b (Y + y) = eyB+
b (Y ) ,

ωa → ω′
a = eyωa ,

ωb → ω′
b = e−yωb . (29)

Thus, boosting by y = −Y from the hadronic to the
partonic center-of-mass frame gives

τB =
ω′

aB+′
a (0) + ω′

bB
+′
b (0)

q2
=

B+′
a (0) + B+′

b (0)

Q
. (30)

In the partonic center-of-mass frame we have ω′
a = ω′

b =
Q, so there is no hierarchy. Correspondingly, the gener-
alized hemispheres in this frame are again perpendicular
to the beam axis, so Eq. (30) has the same form as B̂.

Note that for e+e− → jets, one can use the thrust
axis to define two hemispheres with na,b analogous to our
case. In the 2-jet limit, thrust is then given by 1 − T =
(Q na ·pXa

+ Q nb ·pXb
)/2Q2. Hence, we can think of τB

as the analog of thrust for incoming jets. For this reason
we will call τB the “beam thrust”.

In analogy to Eqs. (17) and (27), we define the cutoff
on τB by

τB ≤ e−2ycut
B . (31)

For τB → 0 or equivalently ycut
B → ∞ the jets along the

beam axes become pencil-like, while for generic ycut
B we

allow energetic particles up to rapidities y ! ycut
B (with

y measured in the partonic center-of-mass frame).
The beam functions are boost-invariant along the

beam axis, so the different hemisphere definitions
do not affect them. The soft function is boost-
invariant up to the hemisphere definition, which de-
fines its arguments k+

a,b. Hence, boosting by −Y

we have Sihemi[eY k+
a , e−Y k+

b ; Y ] = Sihemi[k+
a , k+

b ; 0] =

Sihemi(k+
a , k+

b ), where the third argument denotes the
definition of the hemispheres. This implies that the soft
function for τB is the same as in Eq. (26). The factoriza-
tion theorem for τB following from Eq. (19) is

1

σ0

dσ

dq2dY dτB
=

∑

ij

Hij(q
2, µ)

∫
dta dtb

× Bi(ta, xa, µ)Bj(tb, xb, µ)

× Q SB

(
Q τB −

ta + tb
Q

, µ
)

. (32)

Integrating over 0 ≤ τB ≤ exp(−2ycut
B ) we obtain

dσ

dq2dY
(ycut

B ) =

∫ exp(−2ycut
B

)

0
dτB

dσ

dq2dY dτB
. (33)

We will use Eqs. (32) and (33) to show plots of our results
in Sec. V.

C. Relating Beam Functions and PDFs

The beam functions can be related to the PDFs by per-
forming an operator product expansion, because ta,b '
Λ2

QCD. This yields the factorization formula

Bi(t, x, µ) =
∑

j

∫ 1

x

dξ

ξ
Iij

(
t,

x

ξ
, µ

)
fj(ξ, µ)

×
[
1 + O

(Λ2
QCD

t

)]
, (34)

where we sum over partons j = {g, u, ū, d, . . .}, Iij are
perturbatively calculable Wilson coefficients, and fj is
the standard PDF for parton j. The O(Λ2

QCD/t) power
corrections in Eq. (34) involve proton structure functions
at subleading twist. Further mathematical details on
Eq. (34) are discussed in Sec. III, whereas here we fo-
cus on the physical ramifications.

The interpretation of Eq. (34) is illustrated in Fig. 5.
At a hadronic scale µΛ ∼ 1 GeV, the initial conditions for
the PDFs fj can be specified, and one has the standard
DGLAP evolution up to the scale µB,

µ
d

dµ
fj(ξ, µ) =

∑

j′

∫
dξ′

ξ′
Pjj′

( ξ

ξ′
, µ

)
fj′(ξ

′, µ) . (35)

The anomalous dimensions Pjj′ are the standard QCD
splitting functions for quarks, antiquarks, and gluons (in-
cluding the color factors and coupling constant). Equa-
tion (34) applies at the scale µ = µB, since this is the
scale at which a measurement on the proton is performed
by observing the soft and collinear radiation contribut-
ing to B+

a,b. At this scale, a parton j with momentum
fraction ξ is taken out of the incoming proton according
to the probability distribution fj(ξ, µ). As the parton
continues to propagate and evolve with µ > µB, it is

t: jet mass
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anomalous-dimension matrix of n-jet SCET operators

SCET for n-jet processes
✤ n different types of collinear quark and gluon fields (jet 

functions Ji), interacting only via soft gluons (soft function S)
✤ Hard contributions (Q ~ √s) are integrated out and absorbed 

into Wilson coefficients:

✤ Scale dependence controlled by RGE:

✤ Same anomalous-dimension matrix governs  IR poles of 
dimensionally regularized, on-shell parton scattering 
amplitudes.

Hn =
�

i

Cn,i(µ) O
ren
n,i (µ)

d

d lnµ
|Cn({p}, µ)� = Γ(µ, {p}) |Cn({p}, µ)�

TB, Neubert 2009

7



On-shell matching
✤ To determine hard function, calculate on-shell amplitudes in 

QCD and effective theory

✤ In effective theory all loop corrections vanish on-shell, because 
integrals are scaleless.

✤ IR poles in QCD map onto UV poles of n-jet operators in SCET

.. ..≡ Cn×

lim
�→0

Z−1
�
�, {p}, µ

�
|Mn(�, {p})� = |Cn({p}, µ)�

Mn

QCD SCET
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UV-IR connection
✤ implies that IR singularities of QCD amplitudes can be understood 

with renormalization group methods.
✤ Soft-collinear factorization implies a constraints on the hard 

anomalous dimension

✤ Soft function is matrix element of Wilson lines. Due to non-abelian 
exponentiation only a small set of color structures can appear in Γs.

✤ An additional strong constraint is provided by the factorization of 
amplitudes in the collinear limit.

TB, Neubert ‘09; Gardi, Magnea ‘09;

Γ(sij) = Γs(Λ2
ij) +

�

i

Γi
c(M

2
i )1 Λ2

ij =
M2

i M2
j

sij
, with

Mi dependence must cancel!

trivial color structure

soft scale

TB, Neubert ’09 
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All-order proposal for Γ (massless case) 
✤ Anomalous dimension is conjectured to be extremely 

simple:

✤ minimal structure, reminiscent of QED
✤ IR poles determined by color charges and momenta of 

external partons 
✤ color dipole correlations, like at one-loop order

The formal solution to this equation can be written in the form

Z(ε, {p}, µ) = P exp

[∫ ∞

µ

dµ′

µ′ Γ({p}, µ′)

]
, (6)

where the path-ordering symbol P means that matrices are ordered from left to right according
to decreasing values of µ′. The upper integration value follows from asymptotic freedom and
the fact that Z = 1 + O(αs).

In the Section 4, we will discuss theoretical arguments supporting an all-order conjecture
for the anomalous-dimension matrix presented in [3], which states that it has the simple form

Γ({p}, µ) =
∑

(i,j)

Ti · Tj

2
γcusp(αs) ln

µ2

−sij

+
∑

i

γi(αs) , (7)

where sij ≡ 2σij pi · pj + i0, and the sign factor σij = +1 if the momenta pi and pj are both
incoming or outgoing, and σij = −1 otherwise. Here and below the sums run over the n
external partons. The notation (i1, ..., ik) refers to unordered tuples of distinct parton indices.
Our result features only pairwise correlations among the color charges and momenta of different
partons. These are the familiar color-dipole correlations arising already at one-loop order from
a single soft gluon exchange. The fact that higher-order quantum effects do not induce more
complicated structures and multi-particle correlations indicates a semi-classical origin of IR
singularities. Besides wave-function-renormalization-type subtractions accomplished by the
single-particle terms γi, the only quantum aspect appearing in (7) is a universal anomalous-
dimension function γcusp related to the cusp anomalous dimension of Wilson loops with light-
like segments [23–25]. The three anomalous-dimension functions entering our result are defined
by relation (7). They can be extracted from the known IR divergences of the on-shell quark
and gluon form factors, which have been calculated to three-loop order [26–28]. The explicit
three-loop expressions are given in Appendix A.

Concerning the form of (7), we note that a conjecture that an analogous expression for
the soft anomalous-dimension matrix (see Section 4.4 below) might hold to all orders was
mentioned in passing in the introduction of [12], without presenting any supporting arguments.
In a very recent paper, Gardi and Magnea have analyzed the soft anomalous-dimension matrix
in more detail and found that (7) is the simplest solution to a set of constraints they have
derived [29]. However, they concluded that the most general solution could be considerably
more complicated. Indeed, we emphasize that as a consequence of our result some amazing
cancellations must occur in multi-loop calculations of scattering amplitudes. At L-loop order
Feynman diagrams can involve up to 2L parton legs, while the most non-trivial graphs without
subdivergences can still connect (L+1) partons. We predict that these complicated diagrams
can be decomposed into two-particle terms, whose color and momentum structure resembles
that of one-loop diagrams. At two-loop order, these cancellations were found by explicit
calculation in [30, 31]. More recently, the analysis was extended to the subclass of three-
loop graphs containing fermion loops [32]. In Section 6.2 we will present a simple symmetry
argument explaining these results.

To derive the perturbative expansion of the Z-factor from the formal solution (6) we use

6

sum over pairs
i≠j of partons

color charges anom. dimensions, 
known to three-loop order 

(pi + pj)2

TB, Neubert 2009; Gardi, Magnea 2009; Bern et al. 2008
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Order-by-order analysis TB, Neubert ’09

✤ Up to two loops, the constraints do not allow for any additional terms 
beyond the conjecture
✤ Explains earlier two-loop result for Γs . Dixon, Mert Aybat and Sterman ’06

✤ At three loops a single additional structure can appear

✤ F must depend on conformal ratios                                 and must 
vanish in all collinear limits. 

✤ Dixon, Gardi and Magnea ’09 have constructed candidate functions 
which could arise at 3 loops. Simplest example is 

We now substitute for the cusp angles entering the soft anomalous-dimension matrix the
expression on the right-hand side of (45). This yields Γs({s}, {L}, µ) as a function of the
variables sij and Li. The dependence on the collinear scales must cancel when we combine
the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
the relation

∂Γs({s}, {L}, µ)

∂Li
= Γi

cusp(αs) , (48)

where the expression on the right-hand side is a unit matrix in color space. This relation
provides an important constraint on the momentum and color structures that can appear in the
soft anomalous-dimension matrix. A corresponding relation has been derived independently
in [29].

Because the kinematical invariants sij can be assumed to be linearly independent, relation
(48) implies that Γs depends only linearly on the cusp angles βij , see (45). The only exception
would be a more complicated dependence on combinations of cusp angles, in which the collinear
logarithms cancel. The simplest such combination is

βijkl = βij + βkl − βik − βjl = ln
(−sij)(−skl)

(−sik)(−sjl)
, (49)

which coincides with the logarithm of the conformal cross ratio ρijkl defined in [29]. For
simplicity, we will use the term “conformal cross ratio” in the following also when referring to
βijkl. This quantity obeys the symmetry properties

βijkl = βjilk = −βikjl = −βljki = βklij . (50)

It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios. Moreover, given four parton momenta, there
exist two linearly independent conformal cross ratios, since

βijkl + βiklj + βiljk = 0 , (51)

and all other index permutations can be obtained using the symmetry properties in (50).
Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension

matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (52)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (53)

21
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the soft and collinear contributions to the total anomalous-dimension matrix. We thus obtain
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cusp(αs) , (48)
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provides an important constraint on the momentum and color structures that can appear in the
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βijkl. This quantity obeys the symmetry properties
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It is easy to show that any combination of cusp angles that is independent of collinear loga-
rithms can be expressed via such cross ratios. Moreover, given four parton momenta, there
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βijkl + βiklj + βiljk = 0 , (51)

and all other index permutations can be obtained using the symmetry properties in (50).
Our strategy in Section 6 will be to analyze the structure of the soft anomalous-dimension

matrix first, since it is constrained by the non-abelian exponentiation theorem and the con-
straint (48). The universality of soft gluon interactions implies that the soft contributions only
probe the momentum directions and color charges of the external partons, but not their po-
larization states. Dependence on the parton identities thus only enters via the cusp variables
βij and non-trivial color-conserving structures built out of Ti generators. If our conjecture (7)
is correct, then (47) implies that the soft anomalous-dimension matrix should be given by

Γs({β}, µ) = −
∑

(i,j)

Ti · Tj

2
γcusp(αs) βij +

∑

i

γi
s(αs) , (52)

where
γi(αs) = γi

c(αs) + γi
s(αs) . (53)

21

F (x, y) = x3(x2 − y2)

∆Γ3({p}, µ) =
�

(i,j,k,l)

fadef bceT a
i T b

j T c
k T d

l F (βijkl,βiklj − βiljk)

sum over legs
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Applications
✤ Determination of F would need three-loop computation of four point-

function. 
✤ Independent of whether all-order ansatz holds, we have the 

anomalous dimension Γ relevant for NNLL resummations of n-jet 
processes.
✤ Logarithmic part of Γ to three loops, non-logarithmic part to two.
✤ → Enough for resummations of one-loop processes.

✤ So far, resummations in SCET were performed for two jet processes
✤ DIS, e+ e− event shapes, Higgs production, Drell-Yan, top 

production, sparticle production...
✤ With only two directions of large energy, we cannot have any 

energetic partons in the final state at a hadron collider! 
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Photon production  pp→ γ + X at large pT 

✤ First SCET calculation of a 
physical cross section with 
energetic particles in three 
directions.

✤ Perform NNLL resummation of 
αsnlog2n(MX/pT) corrections 
arising for at large pT.
✤ NLL was known Laenen et al. 

’98, Catani et al. ’98, Kidonakis and 
Owens ’99

✤ At large pT fragmentation 
contribution is suppressed. 
Resum the prompt photon 
contribution. 

TB, M. Schwartz 0911.0681
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 pp→ γ + X at large pT

✤ Have derived factorization theorem for prompt 
photon production at large

✤ (there are different partonic channels, with 
different H, J, S and f’s)

p

X

γ

p

pT �MX

d2
σ

dydpT
= H ⊗ J ⊗ S ⊗ f1 ⊗ f2
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Hard, jet and soft functions

✤ Hard function is square of on-shell qg→qγ amplitude. Ellis et al. ’83, 
Arnold and Reno ’89

✤ Jet functions are quark and gluon propagators in light-cone gauge.
✤ Soft function is matrix element of Wilson lines Yi from 0 ... ∞ along the beam 

and jet directions.

X X X X X X

X X X X X X

Figure 2: Diagrams contributing to the gluon jet function at NLO. The usual gluon self-energy
contributions are represented by the first graph. In the remaining diagrams gluons are emitted
from one of the Wilson lines, which are denoted by crosses.

The only place where the gluon jet function has appeared previously is in the analysis of
quarkonium production [40, 41, 42]. In [42], its one-loop anomalous dimension was calculated.
Here, we will compute the full order αs gluon jet function and derive its anomalous dimension
to order α3

s, although for NNLL resummation we only need the α2
s result.

The gluon jet function is defined by

tr 〈0| Aa
J

µ
⊥(x)Ab

J
ν

⊥(0) |0〉 = (−gµν
⊥ ) δab g2

s

∫
d4p

(2π)3
θ(p0) Jg(p

2) e−ipx . (80)

The strong coupling constant gs on the right-hand side is the bare coupling; the collinear
gluon fields were defined in Eq. (24). These collinear gluon operators only have non-vanishing
matrix elements for intermediate collinear states. Thus, this jet function can be thought of as
the result of integrating out the collinear modes at the scale µj. Equivalently, we can extract
the jet function from the imaginary part of the time-ordered product of collinear fields

1

π
Im

[
i

∫
d4x eipx〈0|T

{
Aa

J
µ
⊥(x)Ab

J
ν

⊥(0)
}
|0〉

]
= (−gµν

⊥ ) δab g2
s Jg(p

2) . (81)

This second definition shows that the jet function is given by the imaginary part of the
Feynman propagator in light-cone gauge, since in this gauge the Wilson lines in Eq. (24) are
absent.

The relevant diagrams in SCET are shown in Figure 2. In Feynman gauge all of the graphs
in the bottom row vanish. The first graph contributes to the wavefunction renormalization.
Since the collinear sector of SCET is equivalent to full QCD, this graph can be found in
textbooks. In units of the tree-level result, the graph gives

Ia =
αs

4π

(
µ2

−p2

)ε [(
5

3
CA −

4

3
TFnf

)
1

ε
+

31

9
CA −

20

9
TF nf

]
. (82)

The second and third diagrams have been computed in [56] and [57] in Feynman gauge. They
give

Ib = Ic =
αs

4π

(
µ2

−p2

)ε

CA

[
2

ε2
+

1

ε
+ 2 −

π2

6

]
. (83)
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Figure 1: Two-loop diagrams contributing to the jet function in QCD. Gluons emitted from the
crossed circles originate from the Wilson lines. Not shown are additional diagrams resulting from
mirror images in which the two external points are exchanged. The first diagram is the full fermion
two-point function, not just the one-particle irreducible part.

2.1 Evaluation of the two-loop diagrams
We first discuss the evaluation of the bare quantity jbare(Q2) and later perform its renormalization.
Let us begin by quoting the result for the one-loop master integral

∫
ddk

(−1)−a−b−c
(
k2 + i0

)a [(k + p)2 + i0
]b (n̄ · k)c

= iπ
d
2
(
−p2 − i0

) d
2−a−b (n̄ · p)−c J(a, b, c) , (8)

with

J(a, b, c) =
Γ(d2 − b) Γ(

d
2 − a − c) Γ(a + b −

d
2 )

Γ(a) Γ(b) Γ(d − a − b − c)
. (9)

At two-loop order, the most general integral we need is (omitting the “+i0” terms for brevity)
∫
ddk
∫
ddl

(−1)−a1−a2−a3−b1−b2−b3−c1−c2
(
k2
)a1 (l2

)a2 [(k − l)2
]a3 [(k + p)2

]b1 [(l + p)2
]b2 [(k + l + p)2

]b3 (n̄ · k)c1 (n̄ · l)c2

= −πd
(
−p2
)d−a1−a2−a3−b1−b2−b3 (n̄ · p)−c1−c2 J(a1, a2, a3, b1, b2, b3, c1, c2) . (10)

We use the same standard reduction techniques as in the two-loop calculation of the soft function [2]
to express all integrals we need for the evaluation of the diagrams in Figure 1 in terms of four master
integrals Mn. Introducing the dimensional regulator ε = 2 − d/2, we obtain

M1 = J(1, 1, 0, 0, 0, 1, 0, 0) =
Γ3(1 − ε) Γ(2ε − 1)
Γ(3 − 3ε)

,

3

n1n1

n2n2

nJ

nJ

Figure 1: Diagrams contributing to the soft function at NLO.

4.2 Soft functions

We consider the soft functions next. The Lagrangian of the soft sector of SCET is identical
to the standard QCD Lagrangian, so the calculation of the soft matrix element is the same as
in QCD. They are determined by matrix elements of time-ordered products of three Wilson
lines. Rewriting Eq. (47), for the two channels,

1

Nc
〈0|Tr T̄

[
(Y †

1 YJta Y †
J Y2)(x−)

]
T

[
(Y †

2 YJtaY †
J Y1)(0)

]
|0〉 =

∫ ∞

0

dk+ e−ik+(n̄J ·x)/2 Sqq̄(k+) ,

1

Nc
〈0|Tr T̄

[
(Y †

1 Y2t
a Y †

2 YJ)(x−)
]

T

[
(Y †

J Y2t
aY †

2 Y1)(0)
]
|0〉 =

∫ ∞

0

dk+ e−ik+(n̄J ·x)/2 Sqg(k+) .

The soft functions for the qq̄ and qg channels differ only by which representation of SU(3)

is associated with which direction. In particular, the position xµ
− = (n̄J ·x)

nµ
J

2 at which they
are evaluated points in the direction of the adjoint in the qq̄ → gγ case and a triplet (or
anti-triplet) in the qg → qγ case.

In dimensional regularization the virtual graphs contributing to this soft function vanish,
so we are left with real emission diagrams. These can be drawn as cuts through diagrams
with a gluon being exchanged between any Wilson line at 0 and any other Wilson line at x,

as shown in Figure 1. The soft (Eikonal) Feynman rules give a factor of nµ
i

(q·ni)
for the emission

from leg i, so in particular graphs involving emission and absorption into the same leg vanish.
As indicated by the one-dimensional Fourier transforms in Eq. (64), the x− dependence means
we only need the dependence on the component of soft radiation backward to the direction of
the jet.

The non-vanishing diagrams for the qq̄ → gγ case give

Sqq̄(k) = 2 g2
sµ

2ε

∫
ddq

(2π)d−1
δ(q2)θ(q0)δ(k − nJ · q)

×
[(

CF −
1

2
CA

)
n1 ·n2

(n1 ·q)(n2 ·q)
+

1

2
CA

nJ ·n1

(nJ ·q)(n1 ·q)
+

1

2
CA

nJ ·n2

(nJ ·q)(n2 ·q)

]
, (64)

and for the qg → qγ channel
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Resummation by RG evolution
✤ Evaluate each part at its characteristic scale, evolve 

to common scale:

0

µ2

µ2
f

PDFs

pT

Soft functionJet functionHard func.

mX

m2
X/pT

H

J

S

fi(x1)fj(x2)
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✤ Have analytic solution for the RGs of H, J and S. TB and Neubert ’06

✤ Using RG invariance and known results, we are able to extract all 
anomalous dimensions to three loops
✤ Hard anomalous dimension ΓH  from general result TB and Neubert 

’09 (see also Gardi and Magnea ’09 + Dixon ’09)
✤ For n=3, the constraints determine ΓH  uniquely.

✤ Quark-jet function anomalous dimension         known

✤ Soft anom. dim. for qg channel is

✤ Soft anom dim. for qq channel  is 

✤ Gluon-jet function anomalous dimension is        

Anomalous dimensions

ΓJq

ΓSq̄q =
2CF − CA

CA
ΓSqg

{
ΓSqg = ΓHqg − ΓJq

ΓJg = ΓHq̄q − ΓSq̄q
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Scale choice
✤ Natural choice for scale in hard function is
✤ Choice of jet scale      is more difficult, since partonic invariant mass 

varies                                   where the hadronic
✤ For small MX , i.e. very large pT,                                is appropriate
✤ Choice                     leads to Landau pole ambiguities; is implicit 

in trad. resummation method. 
✤ Convolution with PDF dynamically enhances threshold region of 

low mX .
✤ Would like to set        to the average value of mX , but convolution 

with PDFs can only be done numerically.
✤ Determine       by looking at jet-function corrections as a function 

of       . Reasonable scale choice gives moderate corrections. 

µh ∼ pT

mX = 0 . . . MX
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Figure 4: Determination of µj . On the left is the relative cross section for variations of µj

around µj = pT for ECM=1960 GeV. The other scales are chosen to be µh = µf = pT and
µs = µ2

j/µh. On the right, the values of µj which minimize the scale variation at various pT ’s
are shown for the Tevatron and the LHC. The solid lines show a linear regression to the points,
and the dashed line is our default choice, Eq. (107).

power corrections arising in the integration can be of a lower order (and thus of larger size)
than the physical power corrections to the factorization theorem [58].

In [59] it was argued that these spurious singularities are particularly strong in momentum
space and that it is therefore preferable to perform resummation in moment space. However,
the effective theory framework allows us to completely avoid the need to evaluate the coupling
at unphysically small scales. It is not necessary to eliminate the logarithms in the partonic
cross section, what matters is that the final physical cross section is free of large logarithms.
Instead of choosing the jet scale µj at the integrand level we should choose the scale after the
convolution with the PDFs. That is, instead of setting µj = mX , the appropriate jet scale is
something like the average mass of a jet contributing to the cross section.

To get a sense of what an appropriate average jet scale should be, let us consider some
limits. At very large pT , the relevant scale in the physical cross section is the mass of the
hadronic final state, so the choice µ2

j ∼ M2
X = E2

CM(1 − pT /pmax
T ) is appropriate. However, at

moderate pT , which is relevant in practice, the appropriate scale choice is less clear. In this
case, the partonic mass mX at a given pT value can vary kinematically over a large range,
0 < mX < MX , but the fall-off of the PDFs near x → 1 suppresses the region of large MX

and hence of large mX as well. Consequently, the partonic threshold region of small mX

is enhanced. This dynamical enhancement of was pointed out by [6, 7] and was studied in
detail [20] for the case of Drell-Yan production. It was found that this enhancement is mostly
effective for relatively high Drell-Yan masses, which corresponds to high pT in our case.

Since we cannot perform the convolution integrals analytically, we will determine the ap-
propriate choice of µj numerically, following two different procedures. On the one hand, we
can study the size of the corrections which arise at the different scales. Once the scale is
chosen appropriately, no large logarithms and associated large corrections should arise. To
study the size of the corrections, we take the factorized cross section, Eq. (19), as a function
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Scale choice

✤ As a default, we choose

   and vary by a factor two. 

pT!100 GeV
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Hard function correction
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Figure 3: Size of the hard and jet function one-loop corrections as a function of the scale for
different values of pT at ECM =1960 GeV. The right panel shows the optimal scale choice at
different pT , with the dashed lines denoting our default choice, Eq. (107).

6 Scale choices and matching

While the resummed result is formally independent of the scales µh, µj , and µs, there is
residual higher-order dependence on these scales if the perturbative expansions of the hard,
jet and soft functions are truncated at a finite order. To get a well behaved expansion, we want
to evaluate each contribution at its natural scale, where it does not involve large perturbative
logarithms. In a fixed order calculation, the presence of several scales can preclude such a
choice, but since the hard jet and soft functions each only depend on a single scale, we are
guaranteed that there are scale choices for which large logarithms are absent.

By examining the form of the resummed distribution, Eqs. (92) and (93), it can be seen
that the hard, jet and soft scales appear in the cross section only through the combinations

p2
T

µ2
h

,
m2

X

µ2
j

,
m2

X

pT µs
. (106)

Picking µh = pT , µj = mX and µs = m2
X/pT as the canonical scales would guarantee the

absence of large logarithms, but this choice is problematic. To see the problem, recall that

m2
X = 1

w
p2

T

v̄ (1 − w), and the parton-level distribution is singular at w = 1. This singularity
is integrated over since the hadronic final states are integrated over, and the final photon pT

spectrum is completely regular. Near w ∼ 1, the mass of the partonic final state mX becomes
small and with the choice µj = mX the coupling constants αs(µj) and αs(µs) are evaluated
at arbitrarily low scales. Because of the Landau pole singularity of the running coupling the
convolution integrals are then no longer well-defined. The w ∼ 1 part of the integrand is
suppressed by the resummation, and the contribution from this region of the integral should
only amount to a power-suppressed correction to the overall result. However, the spurious
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2 is reasonable for small pT . For
larger values of pT , the the optimal scale µj is lower than pT

2 . To be concrete, let us define the
optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT

2

(
1 − 2

pT

ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2 is reasonable for small pT . For
larger values of pT , the the optimal scale µj is lower than pT

2 . To be concrete, let us define the
optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT

2

(
1 − 2

pT

ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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Scale variations

✤ Matching scales variations are small, factorizations scale uncertainty 
dominates. Matching to NLO reduces factorization scale dep.

Factorization scale variation
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Figure 6: Scale variations at the LHC (14 TeV). The lighter bands are NLL and the darker
bands are NNLL matched to NLO. The unmatched NNLL curves are shown as dotted lines.

µj = 0.57(pT − 1.9 pT

ECM
). In the right panel, we show these points, the fits, and our simple

scale choice, Eq. (107). It is comforting that also this criterion leads to similar results.
So that the results from SCET agree with the NLO partonic cross section in the appropriate

limit, power corrections must be added through matching. Because of the peculiar kinematics
of the threshold limit, this must be done with some care. The factorization theorem in SCET
is derived in the limit where the momentum fractions x1 and x2 of the incoming partons, and
the partonic threshold variable w, are all close to 1. The resummed cross section is therefore
only formally µf independent for very large pT , in contrast to the fixed-order cross section,
which has additional terms to cancel the µf dependence exactly, but only works to order αs.
These additional terms are not singular in the threshold variables and therefore not reproduced
by the leading-power factorization theorem. In the phenomenologically relevant regime, x1, x2

and w may not be close to 1, and the residual scale dependence might not be small. This NLO
part of the µf sensitivity can be removed as we match to the NLO partonic cross section, if
the factorization scale in the NLO cross section is varied appropriately. For the matching, we
use

(
d2σ

dvdw

)matched

=

(
d2σ

dvdw

)NNLL

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µf

+

(
d2σ

dvdw

)NLO

µf

. (108)

The subscripts of the last two terms mean set all scales equal to the relevant value of µf . Having

29

factorization scale hard scale

jet scale     soft scale   

20



Matching to fixed order 

✤ We match the NLO fixed order result in JETPHOX. This allows us to 
account for isolation cuts and fragmentation contributions.
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Figure 5: Reduction of the factorization scale dependence through matching. The dotted lines
show the µf scale uncertainty of the unmatched NNLL result, the red lines show the NLO
uncertainty, and the green band shows the µf uncertainty on NNLL matched to NLO. This is
for pp̄ collisions at ECM = 1960 GeV integrated over −0.9 < y < 0.9.

of µ, integrate over the partonic phase space, and compare the tree-level value to the result
obtained after including the one-loop corrections to either the hard, jet, or soft function. The
result is shown in Figure 3. The figure shows that the hard corrections are moderate if they
are evaluated at µh ∼ pT , as expected. The jet function corrections are small at a lower value.
Looking at the middle panel, we find that the choice µj ∼ pT

2 is reasonable for small pT . For
larger values of pT , the the optimal scale µj is lower than pT

2 . To be concrete, let us define the
optimal scale as the scale which minimizes (or in the case of the hard function maximizes) the
correction. The right-hand panel shows that the choices

µh = pT ,

µj =
pT

2

(
1 − 2

pT

ECM

)
, (107)

provide a good approximation to the optimal scale choice as a function of pT . For the soft
scale, we choose µs = µ2

j/µh as our default choice and we have checked that the corrections
are moderate for this scale choice. The plots in Figure 3 are for the Tevatron case, but we
have also checked that the above scale choices are also valid at the LHC, and that the optimal
scales for the qq̄ and qg channels are compatible.

The reasoning behind the above procedure for choosing the scale is that there are no large
logarithms and thus no large corrections if the scale is chosen appropriately. Another criterion
for a good scale choice is that the residual scale dependence should be small. To explore this,
we set µh = µf = pT and µs = µ2

j/µh so that the cross section only depends on the single
scale µj. We then choose µj such that the distribution is minimally sensitive to variations
in µj away from its canonical value. In the first panel of Figure 4 we show the photon pT

spectrum integrated over |y| < 1 at the Tevatron for various values of µj . For simplicity,
we normalize to the cross section at µj = pT , but since we are only interested in the scale
dependence, the normalization is arbitrary. The position of the maxima fit nicely along the
curve µj = 0.56(pT − 1.6 pT

ECM
). The same procedure at the LHC (14 TeV) gives a best fit
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Figure 6: Scale variations at the LHC (14 TeV). The lighter bands are NLL and the darker
bands are NNLL matched to NLO. The unmatched NNLL curves are shown as dotted lines.

µj = 0.57(pT − 1.9 pT

ECM
). In the right panel, we show these points, the fits, and our simple

scale choice, Eq. (107). It is comforting that also this criterion leads to similar results.
So that the results from SCET agree with the NLO partonic cross section in the appropriate

limit, power corrections must be added through matching. Because of the peculiar kinematics
of the threshold limit, this must be done with some care. The factorization theorem in SCET
is derived in the limit where the momentum fractions x1 and x2 of the incoming partons, and
the partonic threshold variable w, are all close to 1. The resummed cross section is therefore
only formally µf independent for very large pT , in contrast to the fixed-order cross section,
which has additional terms to cancel the µf dependence exactly, but only works to order αs.
These additional terms are not singular in the threshold variables and therefore not reproduced
by the leading-power factorization theorem. In the phenomenologically relevant regime, x1, x2

and w may not be close to 1, and the residual scale dependence might not be small. This NLO
part of the µf sensitivity can be removed as we match to the NLO partonic cross section, if
the factorization scale in the NLO cross section is varied appropriately. For the matching, we
use

(
d2σ

dvdw

)matched

=

(
d2σ

dvdw

)NNLL

−
(

d2σ

dvdw

)NNLL

µh=µj=µs=µf

+

(
d2σ

dvdw

)NLO

µf

. (108)

The subscripts of the last two terms mean set all scales equal to the relevant value of µf . Having
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Cross section at Tevatron

✤ Rapidly falling, so in the next slides I will plot 

✤                is the direct photon production w/o isolation cuts.
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Figure 7: Direct photon distributions at the Tevatron, compared to SCET. Green bands are
scale uncertainty. On the left, comparison is made to CDF data. On the right, the rapidity
distribution is shown for pT = 200 GeV. The SCET prediction, matched to NLO, is compared
to the scale uncertainty on the NLO prediction (solid red lines) and to the PDF uncertainty
(dashed blue lines).

µf in the matching terms vary in this way significantly reduces the overall µf dependence,
as can be seen in Figure 5. This figure also shows that the factorization scale uncertainty at
large pT is smaller than the uncertainty on the NLO cross section, even without matching.

With the canonical scales and matching procedure established, we estimate the higher
order uncertainty by varying the scales by a factor of 1

2 to 2 around their default values. The
resulting uncertainties are shown in Figure 6. The overall uncertainty is dominated by the
factorization scale variation. The small bands from variations of µj and µs should be taken
with a grain of salt. The above discussion shows that our scale choice is close to the point
with minimal scale sensitivity, so that the scale variation might underestimate the higher order
corrections. Also, we observe that the one-loop corrections to the soft function happen to be
small in our case, much smaller than what was found in other applications.

7 Results

To compare to data, we need to deal with the important experimental issue of photon isolation.
To account for isolation we use the Monte Carlo program jetphox. This program includes
both the NLO partonic cross section and a fragmentation contribution, applying a user-defined
isolation criteria. To correct the SCET distributions for isolation, fragmentation, and finite
NLO effects, we match to jetphox, i.e. we use the output of this program for the NLO cross
section in the matching relation Eq. (108). To compare to the D0 data [60], we attempt to
match their isolation criterion by demanding less than 10% of the energy in a cone of R = 0.4
around the photon be hadronic. For the CDF data [61, 62], we require less than 2 GeV of
energy inside the R = 0.4 cone. Some studies of sensitivity to isolation parameters can be
found in [61] and we do not attempt to reproduce them here.

In addition, we apply to all the Tevatron theoretical calculations an overall rescaling
of 0.913 (taken from [61, 62]) to account for underlying event, multiple interactions, and
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Tevatron results
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Figure 8: Fixed order and resummed comparison to D0 and CDF data. Left plots show
the LO and NLO scale uncertainties. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. The curves are all corrected for isolation, fragmentation, and hadronization
as described in the text, while the reference distribution dσ(dir)

NLO is the fully inclusive NLO
distribution without corrections.

hadronization. The D0 data corresponds to 380 pb−1 of integrated luminosity at ECM = 1960
GeV, integrated over −0.9 < y < 0.9. The CDF data corresponds to 2.5 fb−1 of integrated
luminosity at ECM = 1960 GeV, integrated over −1 < y < 1. For all calculations, including
jetphox and scale uncertainties, we use the MSTW 2008 NNLO PDFs [63]. The rationale
behind this choice is that our calculation includes the dominant NNLO corrections.

The scale uncertainties for the fixed order result include variation of the factorization
scale µf , the renormalization scale µR, and a fragmentation scale M ′. The fragmentation
scale is related to collinear singularities in final state photon emission from, for example, qq̄
final states, which are relevant starting at NLO. For simplicity, we call all these scales µ
and vary them together. We define the NLO uncertainty as the maximum and minimum
value of the prediction from varying these scales between 1

2pT < µ < 2pT . For the SCET
prediction, we vary the jet, hard, soft and factorization scales. The largest uncertainty is
from the factorization scale variation, even after the proper matching to NLO (see previous
section), and so we use the µf dependence for the SCET uncertainty bands. Again, we take
the maximal and minimal values along the range 1

2pT < µf < 2pT .
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Fragmentation and isolation from JETPHOX. Additional hadronisation 
correction (a factor 0.91) as determined in CDF paper from MC studies.
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LHC results

✤ Direct contribution only: no fragmentation or isolation cuts.
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Figure 9: Predictions for the inclusive direct photon distribution at the LHC. Left plots
show the LO and NLO scale uncertainty. Right plots show the SCET predictions with NLL
resummation or with NNLL resummation matched to fixed order. The dashed blue lines are
PDF uncertainties. No correction for isolation or hadronization is included. In contrast to
Figure 8, here NLO refers to the inclusive direct photon distribution whose central value is
identical to the reference distribution dσ(dir)

NLO.

Figure 7 shows the pT and rapidity distributions at the Tevatron. The pT distribution is
compared to CDF data [61, 62] and the rapidity distribution only to the inclusive NLO result
and the PDF uncertainties. No comparison to data has been made in the rapidity plot because
all of the published Tevatron data differential in the photon rapidity is differential in the jet
rapidity as well, for which our factorization theorem does not apply. Nevertheless, such a
comparison would be interesting as there is a significant discrepancy between the SCET result
and the NLO prediction.

For more detail, we show in Figure 8 the normalized pT spectra and compare to CDF [61,
62] and D0 data [60]. In this figure and in the LHC plots in Figure 9, we normalize to
σNLO, the inclusive NLO direct photon cross section, without isolation cuts and fragmentation
contributions, evaluated with the default scale choices. The left plots show the LO and
NLO distributions, matched to jetphox, with the blue dashed lines indicating NLO PDF
uncertainties (from the MSTW 2008 NNLO PDFs). The right plots show the predictions from
SCET at NLL and NNLL, also matched to jetphox, with the appropriate PDF uncertainties
included as well. Note that at high pT , the scale uncertainty for the SCET result is smaller
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Conclusions
✤ A lot of progress during the past year towards the analysis of more 

complex collider observables in SCET
✤ n-jet anomalous dimension 

✤ completely known to NNLL
✤ fulfills stringent all-order constraints

✤ implementation of jet algorithms
✤ treatment of the beam

✤ First application involving three directions of large momentum flow
✤ Photon production at large pT to NNLL

✤ hadronically still inclusive
✤ However, ...
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... many multi-scale problems at colliders still await effective theory 
treatment, e.g. scattering in Regge kinematics:
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On Regge kinematics in SCET
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We discuss the kinematics of the particles that make up a Reggeon in field theory, using the
terminology of the Soft Collinear Effective Theory (SCET). Reggeization sums a series of strongly-
ordered collinear emissions resulting in an overall Reggeon exchange that falls in the Glauber or
Coulomb kinematic region. This is an extremely multi-scale problem and appears to fall outside of
the usual organizing scheme of SCET.

1. INTRODUCTION

In the 1960’s it was discovered, through a combina-
tion of general principles and phenomenology, that the
high energy behavior of hadron scattering amplitudes is
governed by Regge exchanges, in particular by Pomeron
exchange[1, 2, 3, 4, 5]. The region of applicability for
these techniques is

s → ∞ t fixed (1)

where s, t are the usual Mandelstam variables. While
it is known how Regge behavior emerges in a field the-
ory, the original applications were not derived from any
fundamental theory of the strong interactions. With the
advent of QCD, Regge behavior has also been found for
quarks and gluons[6, 7, 8, 9, 10, 11, 12, 13, 14]. These are
applicable in the Regge region as long as t is large enough
that a perturbative treatment is possible. This has led
to concepts such as the “Reggeized gluon” and the “hard
Pomeron”. Most recently, these ideas have been revived
in the experiments at HERA[15]. While the “hard” and
“soft” Reggeon regions are phenomenologically distinct,
both types of behavior exist1.

In a more recent development, an effective field theory
for the QCD interactions of very high energy quarks and
gluons has been formulated. This separates the high en-
ergy degrees of freedom interacting with a high energy
particle into collinear modes and soft modes, hence the

∗Email: donoghue@physics.umass.edu
†Email: wyler@physik.unizh.ch
1 Note that the word ”soft” in traditional hadronic usage differs

somewhat from the same word in the Soft Collinear theory, which
has a more technical definition described below.

name Soft Collinear Effective Theory (SCET)[16, 17, 18,
19, 20, 21]. This theory has been very useful in organiz-
ing theoretical calculations, especially in the decays of
heavy hadrons and high energy phenomena.

If the high energy behavior of scattering amplitudes is
dominated by Regge exchange, one should expect that
these ideas must also find a description within a theory
such as SCET that describes the high energy degrees of
freedom. To this end we here discuss the ideas of Regge
theory in the language of SCET. There must be a region
of compatibility of these two approaches. It turns out
that a Reggeon exchange is an unusual object in SCET,
one which emerges from a ordered series of collinear ex-
changes but which produces an object of a different char-
acter.

The relevance of Regge exchange for phenomenology
follows from the emergence of power-law behavior for
scattering amplitudes. An amplitude that behaves like
(αs ln s)n in some order of perturbation theory sums to
sα(t) in the Regge region. Note that the traditional no-
tation for a Regge exponent α(t) should not be confused
with the QCD coupling αs. The latter will always carry
the subscript s in this paper. Since Reggeized gluons
and the hard Pomeron (and also the soft Pomeron) carry
α(t) > 0, this can lead to an enhanced power behavior
of interactions in the Regge region, with an effect larger
than estimated in naive perturbative power counting.

2. KINEMATIC REGIONS

The asymptotic Regge behavior comes from the sum-
mation of the ladder graphs shown in Figure 1. In this
figure we treat all particles as scalars because we are pri-
marily interested in kinematics, although we will refer to
the particles as gluons.
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