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* Pilot project funded by DOE ASCR and COMP HEP
e Part of HEP CCE
* Mission: Explore deep learning techniques for track formation

People:
| BNL: Paolo Calafiura, Steve Farrell, Xiangyang Ju, Prabhat,

* FNAL: Giuseppe Cerati, Lindsey Gray, Jim Kowalkowski, Panagiotis
Spentzouris, Aristeidis Tsaris

e Caltech: Maria Spiropulu, Jean-Roch Vlimant, Alexander Zlokapa

e Material available under



https://heptrkx.github.io/

In the CTD2018, Steve Farrell showed exciting performance of
GNN on predicting edge scores. [link]
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https://indico.cern.ch/event/658267/contributions/2881175/
https://gitlab.cern.ch/acts/acts-core

[ ]

Review of the Challenge will be given
tomorrow by Andreas Salzburger [link]

The data provides the hit positions
recorded in the inner detector with
the geometry shown in right

Take one event as an example, there are

_ 11700 particles, 86% are reconstructable,
Our goal is to reconstruct tracks i.e. leaving hits in the detector

from these hits using GNN
The selected data is our starting point:
o Hits recorded in volume [8, 13, 17], basically barrel region

o Particles leaving fully connected tracks in the detector, i.e. no
missing hits
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https://www.kaggle.com/c/trackml-particle-identification
https://indico.cern.ch/event/742793/contributions/3291192/

Track reconstructions

Start with selected hits

Graph Formation

# of particles after each selection (accumulated)
over the total # of particles in the event
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Graph Formatlon edge selectlon
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* Make initial edges from hits in adjacent layers
* Use a simple selection to prune away fake edges

o A¢p/Ar < 0.0006,

O Zo (intercept of the line passing through the two hits) < 100 mm
* Tuned to be efficient for tracks with pT >1 GeV
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e Construct a directed graph, flowing inside-out
o Split into 16 subgraphs, 8 ¢ bins and 2 n bins

 need smart algorithm to deal with hits in boundaries
o input node features: [, ¢, Z]
o Edges belong to a track assigned with score of 1, O otherwise
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After all previous selections
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e About 160k edges, 92% are

fake (in gray)

e 8 gaps result from 8
sections in ¢

e Can GNN find the 13k true
edges out of the 147k fake

ones?




GNN Architecture

Three components operate on graph:

e Input network computes hidden node
features

e Edge network computes edge scores
from node features

e Node network computes hidden node
O features from aggregated weighted
incoming and outgoing node features

Incoming and outgoing nodes with higher weights get more “attention”
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Putting them together

H: hidden states/features, X: input node features

[Ho, X]  [wo] [Hi, X]  [wq]  [Hi, X] [wi]

* EdgeNet and NodeNet iteratively applied 8 times, so 8 iterations
e Message passed with the “attention mechanism”

e Hidden node features carry embedded track information for Edge
Network to make predictions

Xiangyang Ju C3Apr 2019 1(



 ~43k tunable parameters in pytorch

* Trained on for about 60 epochs
* Weighted loss function

With a threshold of 0.7:
Edge Efficiency: 95.2%

[ fake
o e Edge Purity:  90.2%
10 ;
_ # of True Edges passed the threshold
10° 5 Efficiency =

# of total True Edges

102 ;
JLW # of True Edges passed the threshold

Purity =
Y # of total Edges passed the threshold

101 B

10°

107!

| | | | e One can use higher threshold
.« to gain purity at the cost of less
efficiency.
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https://www.nvidia.com/en-us/data-center/tesla-v100/

We are exploring other GNN architectures
to push the performance further.

Following example uses graph_nets library
from DeepMind and a model resembling the
Interaction Networks [link]
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https://arxiv.org/abs/1806.01261

Alternatlve |mplementat|on of GNN

[Ho, Ho] [H4, Ho] [Hi]

Input Graph Graph Output
m_’ Network |~ Netwpork I Netwpork " "*| Network "] l l

Differences:

e Edge features provided in the input
* Alternate message passing implementation:
o No explicit attention mechanism

o Edge features are computed from node features and then summed
across all neighbors

e Output Network computes final edge scores
* Bigger, deeper model (266k parameters)

We can wsuahze the iIntermediate outputs of the model
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Predlcted score |mproves after each |terat|on
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Predlcted score |mproves after each |terat|on
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Predicted score improves after each iteration
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Predicted score improves after each iteration
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Predicted score improves after

each iteration
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Edges with higher scores are darker than that with lower scores
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Predicted score improves after each iteration
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Predicted score improves after each

iteration
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Predicted score improves after each iteration
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Performances

* ~266k tunable parameters in TensorFlow
* Trained on a GPU for about 2 epochs

* Weighted loss function
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Connect The Dots, a simple algorithm
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i ] fake
10°; — true Guided by edge scores from GNN, we walk
10°- | through the graph from inside to outside along
ms-li edges with the maximum score that is > 0.1, as

Eﬁ“\uw.ﬁ ones < 0.1 having high probability being fake

o li NSy J—-ﬂ—f}d'b-ﬂ?-ﬁ
. Add paths with scores > 0.8 — having high
107 probability being true

Model output

* Longest path is selected for the starting hit, then go to next not-used hit.
* Each hit is assigned to one track.

o We will lift the constraint to gain efficiency and robustness, and then
resolve ambiguities.
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A summary

1.04 @ . . 4 4 2 4 L
. . ratio w.r.t . . —e
one-event N-particles ratio w.r.t Total Reconstructable relative ratio

Total 11170 100% 100% ; _ .
Reconstructable [CTEXIS 86% 100% 86%  ©
Barrel 7492 67% 78% 8% &
No-missing hits [RESTS010 59% 69% 88% ~_
Edge selection 3114 28 309, 47% % E E:e;tcr?;structable
Split graph [IRZEE 24% 28% 86% - E‘;?mG';h
GNN 2590 23% 27% 7% e T

pT [GeV]

GNN edge classifier achieves over 95% efficiency across the pT range
with a purity greater than 95%
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Including Endcap and Noise hits

e Challenges to make promising :
pairs i
o Endcap has more complex
geometry 5
o Noise hits introduce more
fake pairs o

e Exploring Gaussian Kernel Density
Estimation

o inputs: angle in r-z, z-intercept, angle _ o
in r-¢, ¢-intercept

o output: probability of two hits being
connected by a track

o purity is about 1%.
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e HEP.TrkX follow-up project (Exa.TrkX) funded for three years
o Will focus on using distributed training at HPC scale

o Goal is to validate models for production in at least one
experiment (ATLAS, CMS, DUNE)

* Preliminary results show promising performance of GNN in high
density environments

o It scales well from low-density data to high density one
o GNN achieves > 95% efficiency and purity in predicting edges
o On-going efforts in scrutinizing efficiency loss at each step

* We are actively working with computing experts to handle computing
challenges

 We start to talk with tracking experts from HEP experiments to make
the algorithm more practical




