Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3

Petr Mánek¹, Benedikt Bergmann¹, Petr Burian¹,², Lukáš Meduna¹, Stanislav Pospíšil¹, Michal Suk¹

¹ Institute of Experimental and Applied Physics, Czech Technical University
² Faculty of Electrical Engineering, University of West Bohemia

petr.manek@utef.cvut.cz
Aim of the talk

- Give brief overview of Timepix pixel detectors.
- Describe previous analysis works.

- Introduce *new* analysis work:
 - Extend current approaches to utilize new information,
 - CV-inspired overlap detection and separation,
 - Randomized regression of spatial trajectories in 2D and 3D,
 - ML: particle species classification.
Introduction
Timepix detectors

- Active pixel detector developed by Medipix collaboration, CERN
- 256 x 256 pixels with 55 µm pitch (1.98 cm² sensitive area)
- Hybrid design:
 - Sensor – thin layer of semiconductive material (Si, GaAs, CdTe),
 - ASIC – signal pre-amplifiers and counting circuitry (CMOS-based).
Working principle

Bias voltage source

Ionizing particle

Common electrode

Bump bonds

Pixel-site electrodes

Wire bonds

Pixel registers

Readout pads

Sensor

ASIC

PCB
Operation modes

Time over Threshold (ToT)
- Pixel intensity encodes amount of deposited energy.

Time of Arrival (ToA)
- Pixel intensity encodes incidence time since acquisition start.
Detector networks at LHC

- **ATLAS**
 - Medipix (run 1),
 - Timepix (run 2),
 - Timepix3 (run 2)

- **MoEDAL, LHCb**
 - Timepix (run 2),
 - Timepix3 (run 2)
Notable applications at LHC

Determination of absolute luminosity and induced radioactivity

Characterization of mixed radiation fields at different positions

April 5, 2019 P. Mánek, Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3
Notable applications in space

- **Proba-V satellite (2013)**
 - LEO, altitude: 820 km
 - SATRAM = Timepix-based spacecraft radiation monitoring platform

- **VZLUSAT-1 nanosatellite (2017)**
 - LEO, altitude: 450 km
 - Timepix-based X-ray telescope on board
Data examples
Morphological clustering

- **Idea:** separate pixels into tracks by their spatial adjacency

- **Possible failures:**
 - Broken up tracks
 - Overlaps

Morphological classification

- Various thresholds on linearity, roundness, convex hull, etc.
- Powerful & simple discrimination between track types.
- Often combined with *a priori* info (about beam, converters, etc.)

- **Dots**
 photons and electrons (10 keV)
- **Small Blobs**
 photons and electrons
- **Curly Tracks**
 electrons (MeV range)
- **Heavy Blobs**
 heavy ionizing particles with low range
- **Heavy Tracks**
 heavy ionizing particles (photons)
- **Straight Tracks**
 energetic light charged particles (MIP)

Extension points

- Both techniques originally developed for Medipix2 (binary pixels)
 - ToT information not utilized
 - Susceptible to pile-up \(\rightarrow\) acquisition time tuning

- 6 classes have proven insufficient for more complex tracks, e.g.:
 - \(\delta\)-ray emissions,
 - collisions, fragmentation events,
 - exotic particles
2D Analysis
CV-inspired ideas

- Re-formulate task as an object detection problem
 - Treat ToT as “intensity” and frame as “image”

Photography: Timepix:

April 5, 2019 P. Mánek, Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3
CV-inspired ideas

- Re-formulate task as an **object detection problem**
 - Treat ToT as “intensity” and frame as “image”

- Combine data with *a priori* known information in order to achieve 3D results.

Photography:

Timepix:
Object class: heavy ions

- Desirable properties:
 - Large momentum \rightarrow assumption of linear trajectory
 - Hidden parameters can be approximated with a line segment.
 - Charge sharing produces continuous pattern \rightarrow suitable for LO.
Heavy ion tracks

Cross-section:

Observed track:

- Argon, 75 GeV/c
- Halo
- Core
- δ-rays
- Charge carrier motion
- Charge carrier diffusion (h⁺)
The Algorithm

Timepix Frame

Hough Transform

Event count, overlap separation

RANSAC

Local Optimizer

Angular Analysis

Angular Analysis

dE/dx Analysis

dE/dx Analysis

Preliminary trajectory

More precise trajectory

... for each detected line
The Algorithm

- **Timepix Frame**
- **Hough Transform**
 - Event count, overlap separation
 - Preliminary trajectory
- **RANSAC**
- **Local Optimizer**
 - More precise trajectory
- **Angular Analysis**
- **dE/dx Analysis**

Detector frame:

MoEDAL, detector #4
2015-09-12
The Algorithm

Timepix Frame → Hough Transform → RANSAC → Local Optimizer → Angular Analysis, dE/dx Analysis → More precise trajectory

Event count, overlap separation

Preliminary trajectory

Hough accumulator:

Angular Analysis, dE/dx Analysis → More precise trajectory
The Algorithm

1. **Timepix Frame**
2. **Hough Transform**
 - Event count, overlap separation
3. **RANSAC**
4. **Local Optimizer**
 - Angular Analysis
 - dE/dx Analysis
5. **RANSAC**
6. **Local Optimizer**
7. More precise trajectory
 - Angular Analysis
 - dE/dx Analysis

Segmented track + fit:
- ... Entry point
- ... Exit point
- \(\theta \) ... Incidence angle
- \(\varphi \) ... Azimuth
The Algorithm

Segmented track + fit:

- Entry point
- Exit point

θ ... Incidence angle
φ ... Azimuth

Difference:
Utility weighted by pixel intensity.

Angular Analysis, dE/dx Analysis, Angular Analysis, dE/dx Analysis
The Algorithm

1. **Timepix Frame**
2. **Hough Transform**
 - Event count, overlap separation
 - Preliminary trajectory
3. **RANSAC**
 - Local Optimizer
 - Angular Analysis
 - dE/dx Analysis
 - More precise trajectory
4. **RANSAC**
 - Local Optimizer
 - Angular Analysis
 - dE/dx Analysis

Histogram:
- Significant direction

Angular Analysis
- dE/dx Analysis
The Algorithm

1. Timepix Frame
2. Hough Transform
 - Event count, overlap separation

3. RANSAC
4. RANSAC
5. Local Optimizer
6. Local Optimizer
7. Angular Analysis
8. Angular Analysis
9. dE/dx Analysis
10. dE/dx Analysis

Histogram:
- Significant particle class

Angular Analysis

\[
\frac{dE}{dx} \approx \frac{\sum_i E_i}{\text{trajectory length}}
\]
Hough Transform:
Overlap separation example

- Question: with Hough, are RANSAC & LO really necessary?
- Benchmarked performance, spatial and angular accuracy.
- Generated random frames from manually curated dataset of over 1K experimentally observed tracks.
Question: with Hough, are RANSAC & LO really necessary?
- Benchmarked performance, spatial and angular accuracy.
- Generated random frames from manually curated dataset of over 1K experimentally observed tracks.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>n</th>
<th>\langle FR \rangle</th>
<th>\langle E(x_{far,1}) \rangle</th>
<th>\langle E(x_{far,2}) \rangle</th>
<th>\langle E(\varphi) \rangle</th>
<th>\langle E(\theta) \rangle</th>
<th>\langle t \rangle [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANSAC</td>
<td>5</td>
<td>0.107</td>
<td>4.344</td>
<td>4.266</td>
<td>5.244</td>
<td>10.085</td>
<td>4,492.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.253</td>
<td>6.413</td>
<td>6.384</td>
<td>9.030</td>
<td>10.826</td>
<td>9,123.3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.544</td>
<td>10.264</td>
<td>9.776</td>
<td>12.012</td>
<td>11.786</td>
<td>20,626.7</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.772</td>
<td>14.852</td>
<td>14.572</td>
<td>14.655</td>
<td>10.226</td>
<td>38,161.3</td>
</tr>
<tr>
<td>LO-RANSAC</td>
<td>5</td>
<td>0.104</td>
<td>4.194</td>
<td>3.953</td>
<td>5.169</td>
<td>11.709</td>
<td>24,105.5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.242</td>
<td>6.096</td>
<td>6.219</td>
<td>8.549</td>
<td>12.250</td>
<td>57,995.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.532</td>
<td>9.777</td>
<td>9.311</td>
<td>11.620</td>
<td>12.682</td>
<td>125,795.0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.770</td>
<td>14.034</td>
<td>13.888</td>
<td>13.960</td>
<td>10.167</td>
<td>294,498.0</td>
</tr>
<tr>
<td>SA-RANSAC</td>
<td>5</td>
<td>0.105</td>
<td>4.026</td>
<td>3.938</td>
<td>5.115</td>
<td>12.205</td>
<td>20,882.6</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.238</td>
<td>6.088</td>
<td>6.064</td>
<td>7.833</td>
<td>12.539</td>
<td>19,708.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.528</td>
<td>9.768</td>
<td>9.163</td>
<td>10.912</td>
<td>12.578</td>
<td>39,827.8</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0.769</td>
<td>14.324</td>
<td>14.111</td>
<td>12.535</td>
<td>9.892</td>
<td>83,365.4</td>
</tr>
</tbody>
</table>
Application at LHCb

- 5 Timepix detectors at MoEDAL (LHCb, CERN)
- Known locations, orientations of source and detectors.
- Unknown field composition, secondaries.
Angular Analysis

Fill #6024
3.5M tracks

TPX04
TPX02
117cm
98

Beam

VELO

104.5 cm
66 cm

TPX03
TPX05
dE/dx Analysis

Fill #6024
3.5M tracks

Beam

TPX01

TPX03

TPX05

PX04

TPX02

17 cm

104 cm

66 cm

Institute of Experimental and Applied Physics
Czech Technical University in Prague

P. Mánek, Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3

April 5, 2019
Particle Identification
Motivation

- dE/dx includes information about particle species and momentum

Theory:

![Graph showing mass stopping power vs. beta gamma (\(\beta\gamma\)) for different particle types and momenta.](image)

- Observed dE/dx
- Mass stopping power [MeV cm2 g$^{-1}$]
 - μ^+ on Cu
 - Bethe
 - Radiative
 - Radiative losses
 - Without δ

April 5, 2019

P. Mánek, Randomized Computer Vision Approaches for Pattern Recognition in Timepix and Timepix3
Motivation

- dE/dx includes information about particle species and momentum.

Measurement:

- Oxygen (430 MeV)
 - θ = 0°
- Helium (221 MeV)
 - θ = 0°
 - θ = 60°
 - θ = 90°
Results (5 classes)

Configuration:
- k-NN classifier (k=7)
- 32 uniform dE/dx bins

Results:
- Accuracy = 0.89
Results (5 classes + rejection)

Configuration:
- k-NN classifier (k=7)
- 32 uniform dE/dx bins
- Confidence ≥ 0.95

Results:
- Accuracy = 0.94
- Rejection Ratio = 0.25
WIP: 3D Analysis
Timepix3 vs. Timepix

- Simultaneous ToT and ToA operation mode

- Data-driven readout
 - Hits are reported during acquisition \(\rightarrow\) need to work with incomplete information in online scheme
 - Temporal consistency: hits may be out of order
 - Large data throughput (theoretically up to 80 MHz)

- Increased time resolution
 - Fast ToA clock at 640 MHz \(\rightarrow\) resolution: 1.56 ns
 - TDC synchronization \(\rightarrow\) coincidence analysis
Online morphological clustering

- Conventional morphological clustering cannot be used in Timepix3 → The algorithm needs to be extended.

- Data-driven mode: no frames, pixels are reported continuously
- Out-of-order timestamps: hit buffering in a priority queue
- Geometric DS: efficient adjacency test

→ Advertisement: L. Meduna et al. Real-time Timepix3 data clustering, visualization and classification with a new Clusterer framework
3D event reconstruction

- Estimation of relative depth from fToA \rightarrow 3D point clouds

Ref: Bergmann B. *et al*, "3D track reconstruction capability of a silicon hybrid active pixel detector" *The European Physical Journal C* 77.6 (2017): 421.

- RANSAC and Hough methods easily generalize to 3D.

Results:

$$\frac{dE}{dx} = 3.39 \ \text{MeVcm}^2 / \text{g}$$

- RANSAC Fit
- Hough Fit
Conclusion

- Previously developed pattern recognition methods updated for new detectors (Timepix, Timepix3):
 - Utilized ToT, fToA (increased precision, online clustering alg., 3D reconstruction)
 - Updated clustering for data-driven readout mode → online algorithm

- New methods for HETE analysis developed and evaluated:
 - Randomized → accurate results, good performance
 - Trans-dimensionality → well-suited for overlap separation (simulated up to 20)
 - ML → basic feature model has shown accuracy up to 93.5%

- New methods tested in various applications:
 - Angular, dE/dx analysis (MoEDAL)
 - Particle identification (Heidelberg Ion-Beam Therapy Center)

The authors would like to express their sincere gratitude to the Medipix2 and Medipix3 Collaboration for their permanent support.

This work was supported by European Regional Development Funds: "Van de Graaff Accelerator and Tunable Source of Monoenergetic Neutrons and Light Ions" (No. CZ.02.1.01 / 0.0 / 0.0 / 16_013 / 0001785) and "Research Infrastructure for Experiments at CERN" (LM 2015058)
Further work

- Analysis of non-linear trajectories (under assumption of continuity)
 - Polynomial / spline interpolation
 - Principal curves

- Detection of interactions between events within detector.
 - Branch detection
 - Prong detection

- Application of deep learning (2D CNNs).

- Bus saturation \rightarrow offload to readout hardware (FPGA).
Thank you for your attention. Questions?

Petr Mánek, petr.manek@utef.cvut.cz

Literature: