Connecting the Dots 2019, Valencia

The FCC-hh,-eh and -ee tracking detector concepts and their estimated performance

On behalf of the FCC study group

Details: see last talks of <u>FCC week & CDR volumes</u>

The future begins now

We are at a very compelling point in physics...

- A successfull Run2 just finished
- preparations for Run3 and HL-LHC upgrade ongoing
- So far no signs for new physics at TeV-scale
- > Theory can not provide a definite answer

1

The future begins now

We are at a very compelling point in physics...

- A successfull Run2 just finished
- preparations for Run3 and HL-LHC upgrade ongoing
- So far no signs for new physics at TeV-scale
- Theory can not provide a definite answer

dark matter, neutríno oscíllatíons, matterantí matter ínbalance, híerachy problem, fate of the uníverse...???

1

The future begins now

We are at a very compelling point in physics...

- A successfull Run2 just finished
- preparations for Run3 and HL-LHC upgrade ongoing
- So far no signs for new physics at TeV-scale
- Theory can not provide a definite answer

FCC – Future Circular Collider (ee,hh,eh) International study for post LHC possibilities

- Builds on LHC legacy
- Exploiting energy and luminosity frontier
- <u>conceptual design report</u> for european strategy update 2019

dark matter, neutríno oscíllatíons, matterantí matter ínbalance, híerachy problem, fate of the uníverse...???

100 km cirumference

The FCC programm

$\sqrt{s}[GeV]$

 \Rightarrow 15 years of operation possible, starting in end 2030s

03.04.2019 Conecting the Dots Julia Hrdinka, FCC-hh, -eh and -ee tracking detectors

2

03.04.2019 Conecting the Dots Hrdinka, Julia detectors FCC-hh, -eh and -ee tracking

The FCC programm

- Clean environment
- Small number of tracks
- Extreme statistical precision
- ⇒ Extremely precise tracking (good position & momentum resolution)
- \Rightarrow Light tracker

- Clean environment
- Small number of tracks
- Extreme statistical precision
- ⇒ Extremely precise tracking (good position & momentum resolution)
- \Rightarrow Light tracker

- Study PDF's in unprecedented precision
- observe large Q² & low x events
- Demanding forward region
- \Rightarrow e⁻ & p scattered up to tens of TeV
- \Rightarrow large acceptance vertexing
- \Rightarrow High resolution

3

- Clean environment
- Small number of tracks
- Extreme statistical precision
- ⇒ Extremely precise tracking (good position & momentum resolution)
- \Rightarrow Light tracker

FCC-eh

- Study PDF's in unprecedented precision
- observe large Q² & low x events
- Demanding forward region
- \Rightarrow e⁻ & p scattered up to tens of TeV
- \Rightarrow large acceptance vertexing
- \Rightarrow High resolution

FCC-hh

- Extreme PU & radiation environment (5xHL-LHC)
- Large number of tracks
- Resolve boosted objects (*t*,t,b,c)
- Cover Large p_T range (O(4))

- Clean environment
- Small number of tracks
- Extreme statistical precision
- ⇒ Extremely precise tracking (good position & momentum resolution)
- \Rightarrow Light tracker

FCC-eh

- Study PDF's in unprecedented precision
- observe large Q² & low x events
- Demanding forward region
- \Rightarrow e⁻ & p scattered up to tens of TeV
- \Rightarrow large acceptance vertexing
- \Rightarrow High resolution

FCC-hh

- Extreme PU & radiation environment (5xHL-LHC)
- Large number of tracks
- Resolve boosted objects (*t*,t,b,c)
- Cover Large p_T range (O(4))

 \Rightarrow These 3 programs include entire track reconstruction spectrum of last decades (LEP,HERA,LHC)

FCC-ee

FCC-ee – Detector Options

- > Improve statistical precision of EW & Higgs by O(1)-O(2)
- Probe new physics effects from 10-100 TeV (indirect)
- To maximize luminosity: Final focusing quadrupole inside detector @2.2m from IP

FCC-ee – Detector Options

- > Improve statistical precision of EW & Higgs by O(1)-O(2)
- Probe new physics effects from 10-100 TeV (indirect)
- > To maximize luminosity: Final focusing quadrupole inside detector @2.2m from IP

CLD (CLIC-Like Detector)

Vertex Detector

- First layer: 17mm
- $25 \times 25 \ \mu m^2$ pixels
- 50 μm sensor thickness
- Single point resolution:
 3 μm
- Double layers

Tracking Detector

- Silicon pixel and microstrip
- Single point resolution:
 - $7 \ \mu m \times 90 \ \mu m$

CLD (CLIC-Like Detector)

Vertex Detector

- First layer: 17mm
- $25 \times 25 \ \mu m^2$ pixels
- 50 μm sensor thickness
- Single point resolution:
 3 μm
- Double layers

۲ ×

2.0-

1.5

1.0-

0.5

Tracking Detector

- Silicon pixel and microstrip
- Single point resolution: $7 \ \mu m \times 90 \ \mu m$

Full simulation + track reconstruction studies using ILCSoft (see <u>E.</u> <u>Brondolins talk</u>: New developments in conformal tracking for the CLIC detector)

Performance

- Tracking efficiency single muons
 - Prompt: fully efficient (99%/100% in forward/central region)
 - Displaced: 100% ($p_T > 1 GeV$), 96% ($p_T > 0.1 GeV$)

03.04.2019 Conecting the Dots Julia Hrdinka, FCC-hh, -eh and -ee tracking detectors

FCC-ee – Detector Options

- > Improve statistical precision of EW & Higgs by O(1)-O(2)
- Probe new physics effects from 10-100 TeV (indirect)
- To maximize luminosity: Final focusing quadrupole inside detector @2.2m from IP

IDEA (International detector for e⁺e⁻ accelerators)

Vertex Detector

- Orientation on ALICE ITS upgrade
- MAPS (Monolithic active pixel sensors)
 - 5 μm position resolution
- Light: 0.3(1)% X₀ per inner(outer) layers

Drift Chamber (DCH)

- Following model of KLOE and MEG2 DC
- Tracking & Particle identification
- 90% He-10%iC₄H₁₀ (isobutane)
- Highly transparent
 - 1.6 -5% X_0 in total

IDEA (International detector for e⁺e⁻ accelerators)

Vertex Detector

- Orientation on ALICE ITS upgrade
- MAPS (Monolithic active pixel sensors)
 - 5 μm position resolution
- Light: 0.3(1)% X₀ per inner(outer) layers

Drift Chamber (DCH)

- Following model of KLOE and MEG2 DC
- Tracking & Particle identification
- 90% He-10%iC₄H₁₀ (isobutane)
- Highly transparent
 1.6 E% V in tot
 - 1.6 -5% X_0 in total

Full simulation & reconstruction

- Long term plan
 - FCCSW, TrickTrack & ACTS (see Back-up)
- Currently
 - hough transform (<u>see</u>) & conformal mapping (see <u>E.</u>
 <u>Brondolins talk</u>)
 - Work in progress

200

Synchrotron radiation

- $@\sqrt{s} = 356 \text{GeV } 6.6 \times 10^4 \text{ hits/BX} =>350 \text{ hits/BX with shielding in VXD}$
- $\gamma\gamma \rightarrow hadrons$
- Negligible: < 10⁻² events/BX
 Incoherent e⁺e⁻-pairs (IPC)
- largest impact: 1 event/BX
- 1100 hits/BX in VXD

7

(*) assuming average cluster size 5/2.5 for pixel/strip and safety factor 3

Synchrotron radiation

 $@\sqrt{s} = 356 \text{GeV} 6.6 \times$ 10⁴ hits/BX =>350 hits/BX with shielding in VXD

$\gamma\gamma \rightarrow$ hadrons

- Negligible: $< 10^{-2}$ events/BX Incoherent e^+e^- -pairs (IPC)
- largest impact: 1 event/BX
- 1100 hits/BX in VXD

CLD

CLD Occupancy(*) < 1% for all \sqrt{s} -options

0.05

0

0.1

Z (mm)

Highest rates in two innermost layers

Synchrotron radiation

 $@\sqrt{s} = 356 \text{GeV } 6.6 \times 10^4 \text{ hits/BX} =>350 \text{ hits/BX with shielding in VXD}$

$\gamma\gamma \rightarrow hadrons$

- Negligible: < 10⁻² events/BX
 Incoherent e⁺e⁻-pairs (IPC)
- largest impact: 1 event/BX
- 1100 hits/BX in VXD

CLD

- CLD Occupancy^(*) < 1% for all \sqrt{s} -options
- Highest rates in two innermost layers

DCH

- 3% average occupancy
 - manageable (MEG2 experience)
- Exploit DCH timing measurements for reduction

(*) assuming average cluster size 5/2.5 for pixel/strip and safety factor 3

Synchrotron radiation

@√s = 356GeV 6.6 × 10⁴ hits/BX =>350 hits/BX with shielding in VXD

$\gamma\gamma \rightarrow hadrons$

- Negligible: < 10⁻² events/BX
 Incoherent e⁺e⁻-pairs (IPC)
- largest impact: 1 event/BX
- 1100 hits/BX in VXD

CLD

- CLD Occupancy^(*) < 1% for all \sqrt{s} -options
- Highest rates in two innermost layers

DCH

- 3% average occupancy
 - manageable (MEG2 experience)
- Exploit DCH timing measurements for reduction

(*) assuming average cluster size 5/2.5 for pixel/strip and safety factor 3

FCC-hh

The FCC-hh reference detector

Tracking detector

$$\geq \frac{\delta p_T}{p_T} = 10 - 20\% @ p_T = 10 TeV$$

- $\stackrel{p_T}{\succ} \text{ Remain sensitive to low } p_T (\sim GeV)$
- \blacktriangleright b-,c-, τ tagging capabilities to high η despite huge pile up

~0(4)

XX0

0

0.6

0.5 0.4 0.3

0.2 0.1 3P+BRL+EC

Tilted lavout: BP+BRL+EC

Tilted lavout: BP+BRL

In total $\sim 430m^2$ ($\sim 2x$ CMS) silicon for flat layout, 10% less for tilted layout

5

03.04.2019 Conecting the Dots Julia Hrdinka, FCC-hh, -eh and -ee tracking detectors

10

Extreme radiation and pile-up environment

Radiation:

- Maximum expected fluence
 ~ 10-100 x HL-LHC
 ~100-1000 x LHC
- First IB Layer (2.5cm): ~5-8*10¹⁷n_{eq} / cm²
- External part (after 40cm):
 ~5*10¹⁵ n_{eq} / cm²
- \Rightarrow could use HL-LHC technologies

Charged particles fluence [cm⁻²] per 1 pp collision

Extreme radiation and pile-up environment

Radiation:

- Maximum expected fluence ~ 10-100 x HL-LHC ~100-1000 x LHC
- First IB Layer (2.5cm): ~5-8*10¹⁷n_{eq} / cm²
- External part (after 40cm): $^{5*10^{15}} n_{eq} / cm^2$
- \Rightarrow could use HL-LHC technologies

Clusters:

- MinBias @ <µ>=1000
- Full simulation, geometric digitization & clusterization
- Seconaries give rise by 70%

🞆 primaries only non-hadronic hadronid

rimaries only barrel

non-hadronic barrel

hadronic barre

Extreme radiation and pile-up environment

Radiation:

ECAL

- Maximum expected fluence ~ 10-100 x HL-LHC ~100-1000 x LHC
- First IB Layer (2.5cm): ~5-8*10¹⁷n_{eq} / cm²
- External part (after 40cm): $\sim 5*10^{15} n_{eq} / cm^2$
- \Rightarrow could use HL-LHC technologies

Clusters:

- MinBias @ <µ>=1000
- Full simulation, geometric digitization & clusterization
- Seconaries give rise by 70%

Channel Occupancy:

- In total 9-10M clusters
- ~30M activated pixels
- 2-3 PB/s @ first trigger level (assuming binary Readout 40 MHz event rate)

2000

Z [mm] 10

Pile up mitigation using timing detectors

Primary Vertexing

- 8.1 vertices/mm⁻¹, 2.43 vertices/ps⁻¹
- Enhance by timing resolution of single layer
- Still difficult for η>4

11

Pile up mitigation using timing detectors

Primary Vertexing

- 8.1 vertices/mm⁻¹, 2.43 vertices/ps⁻¹
- Enhance by timing resolution of single layer
- Still difficult for η>4

Seeding

- Full simulation study
- Potential pile-up mitigation using timed track seeding
- Assuming full timing detector

Pile up mitigation using timing detectors

Primary Vertexing

- 8.1 vertices/mm⁻¹, 2.43 vertices/ps⁻¹
- Enhance by timing resolution of single layer
- Still difficult for η>4

Seeding

- Full simulation study
- Potential pile-up mitigation using timed track seeding
- Assuming full timing detector

- \Rightarrow sub-nanosecond resolutions in Si-detectors <u>already achieved</u>
- \Rightarrow Phase II ATLAS/CMS foresee timing layers
- + Full timing detector or timing layers found to reduce many PU effects to HL-LHC levels
- Further increases Data rates (>= 4 bits)

FCC-eh

FCC-eh reference detector

Detector design see

- Concept derived from LHeC
- B-Fiel: 3.5T Solenoid
- More demanding forward region
 Tracker design
- optimized for compactness & high precision
- permit particle flow
- minimize passive material

pixel

- $\sigma_{r\phi}$ =5-7.5 μ m
- σ_z =15 μ m
- 2248 M channels

strixels

- σ_{rφ}=7-9.5μm
- $\sigma_z = 15-30 \mu m$
- 1879 M channels

strip

289 M channels

03.04.2019 Conecting the Dots Julia Hrdinka, detectors FCC-hh, -eh and -ee tracking

Conclusion & future challenges

- > First asessment of possible tracking detectors & performance (published in CDR)
- More detailed full simulation studies ongoing
- > Work on fully working SW suite and full track reconstruction ongoing
- Identified challenges were more R&D is required:

FCC-ee FCC-eh

FCC-hh

14

Conclusion & future challenges

- > First asessment of possible tracking detectors & performance (published in CDR)
- More detailed full simulation studies ongoing
- Work on fully working SW suite and full track reconstruction ongoing
- Identified challenges were more R&D is required:

FCC-ee Competing demands Thin sensors Small position resolution Possibility of timing layer has to be studied Excellent alignment to profit from position resolution

DCH

CLD

- Construction of 4m long wires (stability)
- Occupancy still under investigation

FCC-hh

14

Conclusion & future challenges

- > First asessment of possible tracking detectors & performance (published in CDR)
- More detailed full simulation studies ongoing

FCC-ee

- > Work on fully working SW suite and full track reconstruction ongoing
- Identified challenges were more R&D is required:

CLD

- Competing demands
 - Thin sensors
 - Small position resolution
- Possibility of timing layer has to be studied
- Excellent alignment to profit from position resolution

DCH

- Construction of 4m long wires (stability)
- Occupancy still under investigation

FCC-eh

FCC-hh

- High radiation environment
- \Rightarrow sensor technology in innermost layers still to be found
- PU is a real challenge for tracking
- Opposed requirements due to PU
 - Additional RO (timing, charge deposition)
 - Acceptable data rates

Conclusion & future challenges

- > First asessment of possible tracking detectors & performance (published in CDR)
- More detailed full simulation studies ongoing

FCC-ee

- > Work on fully working SW suite and full track reconstruction ongoing
- Identified challenges were more R&D is required:

CLD

- Competing demands
 - Thin sensors
 - Small position resolution
- Possibility of timing layer has to be studied
- Excellent alignment to profit from position resolution

DCH

- Construction of 4m long wires (stability)
- Occupancy still under investigation

FCC-eh

- Lower radiation levels allow to exploit HV CMOS technology
- Head-on collisions
- \Rightarrow dipole inside detector
- SR-fan due to e⁻beam
- \Rightarrow shielding detector
- \Rightarrow Asymmetric beam-pipe

FCC-hh

- High radiation environment
- ⇒ sensor technology in innermost layers still to be found
- PU is a real challenge for tracking
- Opposed requirements due to PU
 - Additional RO (timing, charge deposition)
 - Acceptable data rates

Resolving high p_T -Jets

Cluster merging

- Frequently close to jet core
 - Pixel: up to tens of %
 - Strip: PU-noise has big impact

Projected track reconstruction
 efficiency significantly degraded
 ATLAS: 6.1-9.3% lost tracks for jets
 (200-1600 GeV)
 1.2
 FCChh simulation

 \Rightarrow ATLAS Trained neural network to identify merged clusters

- + Would enhance reconstruction efficiency for FCChh -
 - Need to read-out charge deposition

12

detector modul

detector module

FCC-hh & FCC-eh (concurrent, optional)

- Possibility for ion collisions
- Main challenges: civil engineering & dipole magnets (16T)
- Cryogenics needs to compensate for SR
- Discovery potential & precission
 - $20 ab^{-1}$ per experiment
 - Higgs couplings to second generation fermions
 - Higgs self coupling: 5-7% precision
 - Study the Higgs potential and EWPT
 - BSM phenomena at 5-7 x mass range of LHC
 - Discovery potential of thermal WIMPs
- ► FCC-eh
 - ERL provides 60 GeV electrons
 - Study parton structure (per mille accuracy of strong coupling)

Parameters	LHC	HL-LHC	FCC-hh
Collision energy cms [TeV]	14	14	100
Dipole field [T]	8.33	8.33	16
SR power/length [W/m/ap.]	0.17	0.33	28.4
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	5	30
Events/bunch crossing	27	135	1000(200)
Stored energy/beam[GJ]	0.36	0.7	8.4

FCC-eh reference detector

Physics potential

- Study PDF's in unprecedented precision
- \Rightarrow Need to be well known for FCChh (wide kinematical region O(8))
- \Rightarrow observe large Q² & low x events
- High precision Higgs physics & BSM searches

Environment

- Radiation: 10¹⁵n_{eq} / cm²
- Peak Luminosity: 10^{33} cm⁻² s⁻¹
- Int. Luminosity > 100*HERA
- <µ>=1

Detector design

- Concept derived from LHeC
- B-Fiel: 3.5T Solenoid
- More demanding forward region

Tracking detector

- optimized for compactness & high precision
- large acceptance vertexing
- permit particle flow
- minimize passive material

Total: 50.52% X₀ Beam pipe 33.35% Barrel modules 8.36% EC module 8.80%

Radiation Length by Category

1.8

1.4

0.8

0.6 0.4

5

FCCSW – Common Software for ee,hh & eh

Extract LHC experiments where posible & invest new solutions if needed

- Event processing framework: GAUDI (LHCb, ATLAS)
- Flexible Event Data Model: PODIO (ILC, LHCb)
- Detector Description: DD4hep (ILC)
 - ⇒ One common source geometry input for all different simulation types & reconstruction (automatic transcripts)
- Simulation Kernel: Geant4
 - \Rightarrow for full, fast, parametric (Delphes, PAPAS) simulation types
- Tracking package: ACTS (ATLAS)
- Seeding package: TrickTrack (CMS)
- Physics analysis : HEPPY (CMS)
 - \Rightarrow can be run standalone
- \Rightarrow Have infrastructure for physics studies and analysis

Please find more information and tutorials <u>here</u>!

FCC Track Reconstruction

Very challenging environment: $\langle \mu \rangle = 1000$

Profit from

- LHC tracking software
 - \Rightarrow Well tested
 - \Rightarrow High performant (10¹⁰ events with 10³ tracks/event)
- current R&D ongoing for HL-LHC (<µ>= 140-200)
- Use ACTS for tracking and TrickTrack (CMS CA adapted) for seeding

ACTS Package (<u>details</u>)

- Encapsulates ATLAS track reconstruction SW
 - ⇒ Adapt to new developments in computing hardware (concurrency)
 - \Rightarrow Substantial updates of algorithmic code
 - \Rightarrow Long-term maintanance of SW
- Framework & experiment independent
- Minimal dependencies: Eigen, Boost
- Modular and flexible (easy extension)
- Plugins for experiment specific parts

Performance studies

Application to answer performance questions:

Details: see backup

03.04.2019 Conecting the Dots Julia Hrdinka, detectors ⁻CC-hh, -eh and -ee tracking

FCC-ee

- Double ring collider
- Synchrotron radiation \leq 50 MeV/beam
- > 15 years operation
 - $\sqrt{s} \sim 91 \text{ GeV}: 5 \times 10^{12} \text{ Z-Bosons}$
 - $\sqrt{s} \sim 160 \text{ GeV}$: 10⁸ WW-pairs
 - $\sqrt{s} \sim 240 \text{ GeV}$: 10⁶ H-Bosons
 - $\sqrt{s} \sim 350 365 \text{ GeV}: 10^6 \text{ t}\overline{t}$ -pairs
- Clean, well-defined environment
- Extreme statistical precission
 - SM measurements
 - Model independent Higgs
 - Flavour physics
 - rare processes & tiny deviations
 - Probe energy scales beyond direct reach

- Synchrotron radiation
 - $@\sqrt{s} = 91.2 \text{GeV}$ No hits observed
 - $@\sqrt{s} = 356 \text{GeV} \ 6.6 \times 10^4 \text{ hits/BX}$ =>350 hits/BX with shielding in VXD
- $\succ \gamma \gamma \rightarrow hadrons$
 - Negligible: < 10⁻² events/BX
- Incoherent e⁺e⁻-pairs (IPC)
 - largest impact: 1 event/BX
 - 1100 hits/BX in VXD
 - Not expected to affect tracking performance
- \Rightarrow Occupancy^(*) < 1% for all options
- \Rightarrow Highest rates in two innermost layers

CLD (CLIC-Like Detector)

Vertex Detector

- $25 \times 25 \ \mu m^2$ pixels
- 50 μm sensor thickness
- Aim: 3µm single point resolution
- $0.4 \% X_o$ each double layer + 0.2% cooling
- Double layers
- $0.35m^2$ silicon
- First layer: 17mm

Tracking Detector

- Silicon pixel and microstrip
- Single point resolution: 7 $\mu m \times 90 \ \mu m$
- First IT disc: $5 \ \mu m \times 5 \ \mu m$
- 1% X_o per layer + 2.5% (support, cooling, cables)
- 195.6*m*² silicon

CLD – impact parameter resolution

- Determined by vertex detector
- Full simulation + track reconstruction study
- \blacktriangleright To identify secondary vertex $a = 5\mu m$ and $b = 15\mu m$ required
 - \Rightarrow Met for high momentum muons in central region

CLD - performance

Full simulation + track reconstruction study using ILCSoft (see E. Brondolins talk)

- Tracking efficiency (Fraction of reconstructed MC particles) single muons
 - Prompt : fully efficient (99%/100% in forward/central region)
 - Displaced: 100% ($p_T > 1 GeV$), 96% ($p_T > 0.1 GeV$)

IDEA - detailed view

IDEA (International detector for e⁺e⁻ accelerators)

Vertex Detector

- Silicon-based
- Orientation on ALICE ITS upgrade
- MAPS (Monolithic active pixel sensors)
 - $5\mu m$ position resolution
- Light: 0.3(1)% X₀ per inner(outer) layers

Drift Chamber (DCH)

- Following model of KLOE and MEG2 DC
- Particle identification
- 90% He-10%iC₄H₁₀ (isobutane)
- Highly transparent
 - 1.6 -5% X_0 in total
- 2T axial magnetic field

IDEA – expected performance and tracking

Analytical

- Assuming 100µm position resolution (conservative)
- Angular resolution < 0.1 mrad for *p_T* > 10GeV

$$\sigma\left(\frac{1}{p_T}\right) = 3 \times 10^{-5} GeV^{-1} \oplus \frac{0.6 \times 10^{-3}}{p_T} \qquad \sigma_{d_0} = 3\mu m \oplus \frac{15\mu m \ GeV}{p \ \sin \vartheta^{3/2}}$$

Full simulation & reconstruction

- Long term plan
 - using ACTS (see later)
- Currently
 - Using conformal mapping & hough transform (see)
 - Work in progress

400

350

300

200

100

3.0

CLD Software

- Benefit of using fully performant iLCSoft (ILC,CLIC)
 - Detector description: DD4hep
 - Event Reconstruction: Marlin
 - Track Pattern Recognition: Conformal Tracking
 - Transform circles passing through algorithm of a set of axis onto stright lines in new uv plane
 - Make straight line search in 2D
 - Use cellular automaton
 - Simple linear fit to differntiate between track candidates
 - Particle Flow Reconstruction: PandoraPFA

FCC-hh detector requirements

Orientation on LHC detectors & upgrades

- Possibly 2 high luminosity detectors
- Discovery & precision machine
 - SM precision measurements
 - > multi-TeV jets, leptons, γ (up to 50 TeV)
 - Moderate pT BSM
 - \Rightarrow multi-purpose detector

Highly boosted objecst

 \Rightarrow Extend η acceptance

Granularity

- Channel occupancy (1000 PU)
- Resolve highly boosted objects (τ,t,b)
 - \Rightarrow tracking precision < 5 μ m precision in $r\varphi$ for vertexing
 - \Rightarrow transverse granularity in cal 4 x LHC

Parameters	LHC	HL- LHC	FCC- hh
$\sigma_{inel}[mb]$	80	80	103
$\sigma_{tot}[mb]$	108	108	150
RMS luminous region σ_Z [mm]	45	57	49
Line PU density [mm ⁻¹]	0.2	1.0	8.1
Time PU density [ps ⁻¹]	0.1	0.29	2.43
N_{ch} per collision	70	70	122
$< p_T > [GeV/c]$	0.56	0.56	0.7
VBF jet peak [η]	3.4	3.4	4.4
90% $H \rightarrow 4l [\eta <]$	3.8	3.8	4.8

Dots 03.04.2019 Conecting the Julia Hrdinka tracking detectors -eh and -ee =CC-hh,

FCChh magnet system studies

- ➢ 4T/10m solenoid
- **Forward solenoids** for high η-acceptance (alternative: dipoles)
- > 60 MN net force on forward solenoids handled by axial tie rods
- > No return yoke since since stray field can be handled
- Stored energy: ~13.4 GJ

Tracking performance studies

6000

8000

Intermediate

10000

2000

Central

4000

Transverse momentum resolution

- Improves ~1/N_{lavers} but decreases with passed material
- MS limit $\frac{x_{tot}}{x_0} \sim 0.45 \pm 0.25$ @ $|\eta| = 0$
- $\frac{\delta p_T}{\Delta m} \sim 20\%$ for 10TeV tracks

Magnetic field

12000

Two magnet scenarios

14000

Forward

- 1. Central solenoid + forward solenoids
- 2. Central solenoid + forward dipoles
- 4T/10m solenoid
- Forward solenoids for high n-acceptance
- No return yoke: stray field can be handled

|η=3

<u>η=4</u>

n=6

16000

Using tkLayout-tool (Analytical track propagation, taking material scattering and magnetic field into account) See for FCChh results

Expected FCChh impact parameter resolution

- Good d₀ resolution needed for jet-tagging
- Good z₀ resolution needed to identify primary vertex

Using <u>tkLayout-tool</u> (Analytical track propagation, taking material scattering and magnetic field into account) <u>See</u> for FCChh results

FCChh Kinematics

Kinematical coverage of FCC-hh compared to LHC

- M_x...mass of produced final states
- x...fraction of momentum of the parton with respect to the hadron
- Dotted lines: regions of constant rapidity
- FCC-hh reach highly extended
- Possible BSM particles up to tens of TeV produced in central region
 SM physics can be highly boosted

Figure taken from <u>here</u>

Higgs cross sections

Higgs production cross sections at different center of mass energies

➢ Higgs cross section by order of magnitude compared to HLC
 ➢ ttH raised by factor 55
 ➢ HH increased by factor 40

Radiation is a major challenge

Extreme radiation and pile-up environment

Radiation:

- Maximum expected fluence
 ~ 10-100 x HL-LHC
 ~100-1000 x LHC
- First IB Layer (2.5cm): ~5-8*10¹⁷n_{eq} / cm²
- External part (after 40cm):
 ~5*10¹⁵ n_{eq} / cm²
- \Rightarrow could use HL-LHC technologies

Clusters:

- MinBias @ <µ>=1000
- Full simulation, geometric digitization & clusterization
- Seconaries give rise by 70%

Channel Occupancy:

- In total 9-10M clusters
- ~30M activated pixels
- 2-3 PB/s @ first trigger level (assuming binary Readout 40 MHz event rate)

2000

Z [mm]

Digitization inside FCCSW using ACTS

- Close to realistic detector response
 - Translate hit into measurement
- Depends on technologies used for specific detector
 - Use purely geometric approach
 - ➢ Flexible
 - Mimic analogue/digital readout
 - Can take lorentz angle into account
 - > Can use either full or fast simulation hits as input
 - \succ Uses the granularities of FCChh reference design v3.03
 - \Rightarrow Allows to test digital/analogue readout
 - \Rightarrow Allows to study readout of detector
 - \Rightarrow First studies using digitzation in second part of talk

Digitization – creating measurements

- Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

Digitization – creating measurements

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

Digitization – creating measurements

- > Determines cells hit by particle
- Create clusters from neighbouring cells using connected component analysis (boost)
 - Labels connected cells which will be merged into one cluster
 - Allows single clusters from multiple particles

Resolution depends on:

- readout granularity
- Incident angle (i.e. cluster shape)

Cluster errors (residuals to truth position) => realistic resolution estimate

Resolving high p_T -Jets

Cluster merging

- Frequentlty close to jet core
 - Pixel: up to tens of %
 - Strip: PU-noise has big impact

Track reconstruction

- Projected track reconstruction efficiency significantly degraded
- ATLAS: 6.1-9.3% lost tracks for jets (200-1600 GeV)

[%] efficiency FCChh simulation FCChh simulation $\sqrt{s}=100$ TeV, $|\eta_{rel}| < 2.5$, bjets, $p_{\tau}=10$ TeV √s=100TeV, m | < 2.5 <Nclusters Mmulti-particle/Nclusters> particle pT > 15 Me b-jets 9900 GeV $\leq p_{\perp} \leq 10100$ GeV 4900 GeV $\leq p_{_{T}} \leq$ 5100 GeV 0.8 1900 GeV $\leq p_{\perp} \leq 2100$ GeV 3 projected tracking 900 GeV $\leq p_{\perp} \leq 1100$ GeV 400 GeV $\leq p_{\perp} \leq 600$ GeV 0.6 with pile-up $<\mu>$ = 1000 included using NN, ε_{NN}=0.9 0.4 shared clusters/track 0.2 ared clusters/track <u>=1000 0.2 0.3 0 0.1 0.4 20 10 30 0.2 0.3 40 0 0.1 0.4 ΔR cluster size ΔR

 \Rightarrow ATLAS Trained neural network to identify merged clusters

+ Would enhance reconstruction efficiency for FCChh - Need to read-out charge deposition

Silicon sensor R&D ongoing

Requirements

- High hit-rate
 - capability
- High radiation tolerance
- Minimal power
- Cheaper (cover large area)
- ≻ Light
- Increased granularity
- Pattern recognition and identification at large background and pile-up levels

Timing information in Si detectors

How to get in 10ps timing range with Si detectors?

Exploit "in-silicon" charge amplification

- In Geiger-mode fashion (like in gas RPC)
- Low Gain Avalanche Detecors (linear mode)
 - Separate ,collection' of charge from gain

Additional References

- CLD Tracking
- IDEA Tracking
- IDEA Beam-backgrounds
- FCCeh Detector
- FCChh Tracker design
- FCChh tracking and flavour tagging performance
- TrickTrack Seeding for FCChh
- FCChh Occupancy&Data Rates
- ACTS Homepage