Design of matrix 1 for RD50-ENGRUN1 - Analog sampling

O. Alonso, S. Moreno, N. Franch, J. Canals, V. Moro and A. Diéguez

SIC, Electronics and Biomedical Eng. Department, University of Barcelona, Spain

oalonso@el.ub.edu

pads	IO pads	IO pads	IO pads	IO pads			pads
OI	Matrix 1 with an analog timing circuit to sample 3-5 points of the sensor rising time and extrapolate t ₀	Matrix 2 with a time-to- ligital converter ircuit to sample the sensor time	Matrix 3 with super-fast pixel, ideally within 1-2 BXs	Matrix 4 imaging matrix with different sensor cross- sections	Matrix 5 Type A		d OI
Test 1					(reticle- boundary readout, pre- stitching)	IO pads	Test 4
IO pads							IO pads
Test 2					Matrix 5 Type B		Test 5
IO pads					(reticle- boundary readout,	IO pads	IO pads
Test 3	IO pads	IO pads	IO pads	IO pads	pre- stitching)		Test 6

Test structure 1	Simple CMOS capacitors to study oxide thickness
Test structure 2	10 x 10 matrix of very small pixels with passive readout
Test structure 3	10 x 10 matrix of very small pixels with 3T-like readout
Test structure 4	Small matrix of pixels for TCT, e-TCT and TPA-TCT
	measurements
Test structure 5	Single pixels for sensor capacitance measurements

CERN/RD50 collaboration:

 International project to develop radiation hard semiconductor devices for very high luminosity colliders

Target of this submission:

- Improve the timing resolution of HV-CMOS sensors with different solutions implemented at the readout circuit level
- Study new sensor cross-sections
- Study pre-stitching options (increase the device area beyond the reticle size limitation)

Technology:

- 150 nm HV-CMOS from LFoundry

Design effort:

- IFAE (R. Casanova)
- Uni. Barcelona (O. Alonso)
- Uni. Liverpool (S. Powell, E. Vilella and C. Zhang)
- FBK (N. Massari and M. Perenzoni)

The pixel in Matrix 1 includes:

- Sensor \rightarrow 50 µm x 50 µm (~200 fF parasitic capacitance)
- Analog readout electronics → CSA, shaper, filter and comparator.
- <u>Digital readout electronics</u> → Electronics that sense the leading edge of the comparator and store the corresponding time-stamp in an 8-bit memory. The electronics also store the pixel address in another 8-bit memory (this info is not needed for the analysis presented in these slides).
- Sampling electronics → Chain of delay elements and sample & holds to store 5 analog voltages. The sample & holds sample the output voltage of the shaper. The delay elements put the sample & hold in hold mode when there is an event in the pixel. We can tune the delay with an external voltage (i.e., 1.04 ns @ 1 V, 1.94 ns @ 1.1 V).

voltage Simplified schematic and functionality WR, time The main idea is to store up to 5 analog voltages.

Input charge 2k - Power consumption = $25.72 \mu W$

Input charge 9k - Power consumption $\sim 28 \,\mu W$

Conclusion

- The quality of the method depends on:
 - Value of VN → How do we choose the appropriate value of VN?
 - Comparator time response
 - It also depends on the amount of input electrons
 - Better time resolution at larger amounts of input electrons
 - It also depends on the proximity of the real event time to the Cadence/chip time-stamp
 - An event happening at 1.022 μ s gives a better time resolution than an event happening at 2.385 μ s, as 1.022 μ s is closer to the timestamp (1 μ s = 20 * 50 ns) than 2.385 μ s (2.35 μ s = 47 * 50 ns).
 - Time-stamp period
- Power consumption of 28 uW per pixel with the possibility to reduce it to 22 uW
- Other solutions under study

Conclusion

Instead of defining time axis we define the voltage axis=> We are designing a TDC

