

UCL

Gh. Grégoire Feb 25, 2007

Magnetic shields for TOF1 & TOF2

17th MICE collaboration meeting, CERN, Feb. 22 to 25, 2007

What hole size ?

Longitudinal sections

YZ (vertical)

XZ (horizontal)

Material properties _____ UCL

2D computations

In fact for pure 2D computations, the field components represent worst case situations since a real 3D situation is a much more « magnetically closed » geometry for the PMTs.

Radial component for middle PMT

Longitudinal component for middle PMT

Central hole diameter = 600 mm

1-mm mumetal + 5-mm low carbon steel

Central hole diameter = 600 mm

1-mm mumetal + 5-mm low carbon steel

1-mm mumetal only

More field lines penetrating inside mumetal shield !

Radial component for middle PMT

It is seen that:

Longitudinal component for middle PMT

- The radial component remains very weak since the cage structure did already the whole job
 - The **mumetal alone** is clearly not sufficient to get an acceptable **longitudinal** component.

Central hole diameter = 600 mm 1-mm mumetal only

1-mm mumetal only

YZ (vertical)

Side views of TOF2

XZ (horizontal)

Conclusions (1)

FactsThe scintillating bars for TOF1 have already been ordered.The active TOF1 area is thus 42 cm x 42 cm.Let's assume it cannot be changed ...

Results

1. Upstream shielding cage with a central hole of 600 mm

 \cdot Advantage of being similar to the downstream cage (within the present knowledge of acceptable beam scraping)

• But, the PMTs of TOF1 have to be shielded locally with a **double** layer of 5-mm iron + 1-mm mumetal.

A single layer of mumetal is clearly not sufficient to keep very low stray fields for PMTs.

- 2. Upstream shielding cage with a central hole of 420 mm
 - It makes the whole MICE setup not « upstream/downstream » symmetric
 - But, the shielding of the PMTs could be slightly simpler in principle ...
- 3. Main conclusion: the hole(s) in the shield must be inscribed in the active area of the TOFs

TOF maintenance

Shield opening mechanism

Intermediate extracted position

Fully open position

TOF1 maintenance

Fixed length guide tubes

- 85-cm wide permanent extension of guide tubes outside shield
- Straightforward to construct
- Perfect stability at all positions
- Everything in aluminium or plastic
- Guide tubes Aluminium diam 40×4 mm
- Plastic gliders (Lexan + fiberglass)

Conclusions

- 1. Protection against stray magnetic field
 - $\boldsymbol{\cdot}$ The holes in the shield must be inscribed in the active area
 - \cdot The holes of the upstream and downstream shields do not have the same diameters
 - A double layer local shield around each PMT guarantees very low field components

2. Shield construction

- The « Virostek » shields are identical but need minor modifications (screws and recess)
- \cdot The split rings, the 2nd shields, the \ll doors \gg are identical upstream/downtream
- \cdot The access mechanisms to TOF1 and TOF2 are identical but require external guide rails
- $\boldsymbol{\cdot}$ There is still freedom to have larger holes downstream