Future (circular) colliders

gratefully acknowledging input from FCC coordination group the global design study team and all contributors

M. Benedikt

FCC

EuroCirCol http://cern.ch/fcc

LHC

Work supported by the European Commission under the HORIZON 2020 project EuroCirCol, grant agreement 654305

High energy accelerators & colliders

- Using electrical fields (RF cavities) to accelerate and magnetic fields (accelerator magnets) to guide and collide charged particle beams (electrons, protons & antiparticles)
- > Aim at higher energy accelerators for 2 reasons:
 - Production of new heavier particles (according to Einstein): E = mc² ≤ 2E beam (collider)
 - Resolving smaller distances (according to de Broglie):
 Wavelength $\lambda = hc/E$ for LHC ~ 2.10⁻¹⁸ cm

Higher energy → Increased potential for discoveries

Colliders constructed and operated

Discoveries by colliders

Colliders are powerful instruments in High Energy physics for particle discoveries and precision measurements

Michael Benedikt International Teacher Program 2019, CERN

CFRN

LHC: present collider flagship

2012: Higgs boson discovery

University of Edinburg

Université Libre de Bruxelles, Belgium

Completes standard model describing known matter, **BUT this is only 5% of the universe!**

- what is dark matter?
- what is dark energy?
- why is there more matter than antimatter?
- what about gravity?
- etc...

 \succ

 \geq

Upgrade and full exploitation of LHC as first step

High Luminosity LHC project scope

Step 1: HL-LHC upgrade – ongoing

For physics beyond the LHC and beyond the Standard Model, under study (synergy of):

- Linear e⁺e⁻ colliders (CLIC, ILC)
 E_{CM} up to ~ 3 TeV
- Circular e⁺e⁻ colliders (CepC, FCC-ee)
 E_{CM} up to ~ 400 GeV limited by e[±] synchrotron radiation. Ideal for precision measurements
- Circular p-p colliders (SppC, FCC)
 E_{CM} up to ~ 100 TeV
 Ideal for discoveries at higher energy frontiers

High Energy Colliders under study

h ee he

Future Circular Colliders Michael Benedikt International Teacher Program 2019, CERN

European Strategy Update 2013

"CERN should undertake design studies for accelerator projects in a global context, with emphasis on proton-proton and electron-positron high-energy frontier machines."

Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2019)

International FCC collaboration (CERN as host lab) to study:

pp-collider (*FCC-hh*)
 → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km tunnel infrastructure in Geneva area, site specific
- e+e collider (FCC-ee), as potential first step
- *p-e (FCC-he) option,* integration one IP, FCC-hh & ERL
- HE-LHC with FCC-hh technology

Energy: 2 TeV

Large Hadron Collider Circumference: 27 km

Energy: - 14 TeV (pp) - 209 GeV (e⁺e⁻)

Future Circular Collider

Circumference: 80-100 km

Energy:

- 100 TeV (pp) >350 GeV (e+e-)

FCC Scope: Accelerator and Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step HE-LHC: based on FCC-hh technology

R&D Programs

Launch R&D on key enabling technologies
in dedicated R&D programmes, e.g.
16 Tesla magnet program, cryogenics,
SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to CERN accelerator complex; **site-specific**, as requested by European strategy

FCC Scope: Physics & Experiments

Physics Cases

Elaborate and document

- Physics opportunities
- Discovery potentials

Experiment concepts for hh, ee and he Machine Detector Interface studies R&D needs for **detector technologies**

Overall **cost model for collider scenarios** including infrastructure and injectors Develop **realization concepts** Forge **partnerships with industry**

Role of CERN

- Host the study
- Prepare organisation frame
- Setup collaboration
- Identify R&D needs
- Estimate costs

Strategic Goals

- Make funding bodies aware of strategic needs for research community
- Provide sound basis to policy bodies to establish long-range plans in European interest
- Strengthen capacity and effectiveness in high-tech domains
- Provide a basis for long-term attractiveness of Europe as research area

A sustained decrease in specific cost

Specific cost vs center-of-mass energy of CERN accelerators

CERN Circular Colliders & FCC

Must advance fast now to be ready for the period 2035 – 2040 Phase 1 completed: CDR for update of European Strategy by end 2018

Time Indicator

Case: LHC superconducting dipole magnets

	1980	1985	1990	1995	2000	2005	2010
Conceptual studies							
R & D							
Development							
Industrialization							
Series production							
Industry participation	1			,	~ 15 yea	rs	
Total			~	25 years	6		

Geological background

Progress on site investigations

CERN

Future Circular Colliders Michael Benedikt International Teacher Program 2019, CERN

Progress on site investigations

Alignment	Shaft	s Query			Alignment I	Location						Geology	Intersecte	d by Shafts	Shaft Depths				
Choose alignm 100km guasi-		on			+	- AR	АВ	Also		Cart M		Point	Actual	Molasse SA	Shaft Depth (m) Wildflysch	Quaternary	Molasse	Geology (n	n) Calcaire
					e — 3350		1997 (P.S.)	THE SEC			in an	Point	Contraction of the local division of the loc	Molasse SA	wudnysch	Quaternary		Urgonian	Calcare
Tunnel elevation	on at cen	tre:261mASL			Common and		ALLE STREET	JACK BOARD			10.4	A	304						79
Grad. Params	_	-			3						A VAN	в	266						30
Grau. Params		Azim	uth (*): -20			Car And and		Same P	No. 1	The Property		С	257						0
		Slope Angle			14	A States	AND FRE	a states	6	and the second		D	272						
		Slope Angle				P = 1 × 1	X	e /	- <u>8</u>	51 A 29		E	132						0
LOAD		SAVE		CALCULATE		Lang Tar		La se se				F	392	0					56
Alignment cen	tre	Carlo		CALCOULATE	S No.	Le che application		E LEE				G	354						0
X: 2499731			Y: 1108403				and the	月 早 秋日		area Bartan	22	н	268						
		CP 1		CP 2	1 Section 1	CH CONTRACTOR	m /	1 22	8		-	1	170						
Angle		Depth	Angle	Depth	And And	111	mt.					J	315						
LHC	-64*	220m	64*	172m		N. Second		- 1 2 - 7 ×		The second	The star	к	221						
SPS		242m		241m	1 Description	NN		. · · · ·	12 de		×1.1		260						
TI2		235m		241m	1927		21 1	·		State and a	Sec.	L	260						<u>.</u>
TIB		242m		170m			H	G	1 s	Brit	3	Total	3211	52	0	517	2478	0	109
						NO CONSTRUCTION OF	Contraction of the second	12.5		Sector of the second	2.03								

90 – 100 km fits geological situation well LHC suitable as potential injector The 100 km version, intersecting LHC, is the baseline and studied in more detail

Alignment Profile

Tunnelling options for crossing the lake

Ph. Lebrun & J.

FCC I&O meeting 140730

CE schedule studies

- Total construction duration 7 years
- First sectors ready after 4.5 years

Future Circular Colliders Michael Benedikt International Teacher Program 2019, CERN

FCC – tunnel integration in arcs

Future Circular Colliders Michael Benedikt International Teacher Program 2019, CERN

Hadron collider parameters

parameter		FCC-hh	HE-LHC*	,e (HL) LHC		
collision energy cms [TeV]		100	27	14		
dipole field [T]		16	16	8.3		
circumference [km]		100	27	27		
# IP	2	2 main & 2	2 & 2	2 & 2		
beam current [A]		0.5	1.12	(1.12) 0.58		
bunch intensity [10 ¹¹]	1 1 (0.2)		2.2	(2.2) 1.15		
bunch spacing [ns]	25	25 (5)	25	25		
beta* [m]	1.1	0.3	0.25	(0.15) 0.55		
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	>25	(5) 1		
events/bunch crossing	170	<1020 (204)	850	(135) 27		
stored energy/beam [GJ]	8.4		1.2	(0.7) 0.36		
synchrotron rad. [W/m/beam]		30	3.6	(0.35) 0.18		

FCC-hh injector considerations

SPS

LSS1

LHC

100 km FCC

LSS8

High energy and large size of the ring requires a pre-injector chain:

"gear-box" principle

Baseline:

• 3 TeV, directly from LHC, reusing the whole CERN complex

Alternative:

 1.5 TeV with new SPS (7 km machine circumference) based on fast-cycling SC magnets, 6-7T, ~ 1T/s ramp

L = 4.0 km

D Z = 110 m

D theta = 131 deg

L = 4.0 km

D Z = 64 m

D theta = 29 deg

Key Technologies

- 16 T superconducting magnets
- Synchrotron radiation
- Affordable & reliable cryogenics
- Superconducting RF cavities
- RF power sources
- Reliability & availability concepts

High –field SC dipoles

- SC dipole: field defined via current distribution
 - High current densities close to the beam for high fields
 - Only possible with super conductors I > 1 kA/mm2
- Ideal coil geometry for dipolar fields:
 - Azimuthal current distribution $I(\phi) = I_0 cos(\phi)$ Dipol, $(I_0 cos(2))$

(I₀cos(2)) Quadrupol)

2 horizontally displaced circles

Cryo-magnet cross sections

LHC cos theta

FCC-hh block coil Nb3Sn as SC material

Main SC Magnet system FCC (16 T) vs LHC (8.3 T)

FCC

Bore diameter: 50 mm

Dipoles: 4578 *units*, 14.3 *m long*, 16 $T \Leftrightarrow \int Bdl \sim 1 MTm$

Stored energy ~ 200 GJ (GigaJoule) ~44 MJ/unit

Quads: 762 *magnets*, 6.6 *m long*, 375 *T/m*

LHC

Bore diameter: 56 mm
Dipoles: 1232 units, 14.3 m long, 8.3 T ⇔ ∫ Bdl~0.15 MTm
Stored energy ~ 9 GJ (GigaJoule) ~7 MJ/unit
Quads: 392 units, 3.15 m long, 233 T/m

Nb₃Sn conductor program

Nb₃Sn is one of the major cost & performance factors

16 T dipole options under consideration

Towards 16T magnets

Record fields for SC magnets in "dipole" configuration

Iron Laminations

Fillers

StSt Skin

End Plates

Axial Rods

- All coil parts, structural components and tooling are available at FNAL
- Coil fabrication and the work with mechanical structure are in progress
- Magnet reached 14 T in May 2019.

Synchrotron radiation

Charged particles on a curved trajectory irradiate energy:

 $\Delta E \sim \text{const} \cdot \gamma^4 / r = \text{const} \cdot (E/E_0)^4 / r = konst \cdot (E/m_0)^4 / r$

 Energy loss ∆E must be compensated and corresponding heat has to be removed from cold mass of SC magnets (for hadron collider)

 $\Delta W = \Delta Q \cdot (T - T_{\text{tief}}) / T_{\text{tief}} = \Delta Q \cdot (300 - 1.9) / 1.9 \sim 155 \cdot \Delta Q$

For realistic process efficiency is ~1000: 1 W@1.9 K == 1 kW @ room temp.

Synchrotron radiation beam screen prototype

High synchrotron radiation load of proton beams @ 50 TeV:

- ~30 W/m/beam (@16 T) (LHC <0.2W/m)
- 5 MW total in arcs (@1.9 K!!!)

New Beam screen with ante-chamber

- absorption of synchrotron radiation at 50 K to reduce cryogenic power
- factor 50! reduction of power for cryo system

First FCC-hh beam screen prototype Testing 2017 in ANKA within EuroCirCol

Beam screen prototype test

FCC-hh beam-screen test set-up at ANKA/Germany: beam tests since June 2017, for prototypes, confirming vacuum design simulations

Cryo power for cooling of SR heat

Overall optimisation of cryo-power, vacuum and impedance Termperature ranges: <20, 40K-60K, 100K-120K

Main cryogenics parameters and layout

Very large volume of high magnetic field needed to measure momentum of charged particles.

Expanding from LHC detector concepts:

B=6 T, 12 m bore, solenoid with shielding coil and 2 dipoles 10 Tm. Length 64 m, diam. 30 m, magnet 7000 tons, stored energy 50 GJ

Detector Magnet Studies

Designs for physics-performing and cost-efficient magnet systems

Today's baseline:

² 4T/10m bore 20m long Main Solenoid ^{1.5} 4T Side Solenoids – all unshielded ¹ 14 GJ stored energy, 30 kA and ^{0.5} 2200 tons system weight

Alternative challenging design:

4T/4m Ultra-thin, high-strength Main Solenoid allowing positioning inside the e-calorimeter, 280 MPa conductor (side solenoids not shown) 0.9 GJ stored energy, elegant, 25 t only, but needs R&D!

SC links for circuit powering

2x20 k

 $\overline{\mathbf{n}}$

MgB₂ industrial conductor, He gas cooled Example HL-LHC (I_{tot} up to ~|150 kA| @ 25 K) All circuits in single cryostat – compact & efficient

Beam power & machine protection

Stored energy 8.4 GJ per beam

 Factor 25 higher than for LHC, equivalent to A380 (560 t) at nominal speed (850 km/h). Can melt 12t of copper.

- Collimation, control of beam losses and radiation effects (shielding) are of prime importance.
- Injection, beam transfer and beam dump all critical.

Machine protection issues to be addressed early on!

Hydrodynamic tunneling: beam penetrates ~300 m in Cu

FCC-hh beam dilution system

Status of global FCC Collaboration

hh ee he

Companies

32

34 Countries

48

Results of FCC Conceptual Design Study

Study Documentation:

- 4 CDR volumes submitted to EPJ in December 2018.
 - FCC Physics Opportunities
 - •FCC-ee
 - •FCC-hh
 - •HE-LHC
 - Preprints available since 15 January 2019 <u>http://fcc-cdr.web.cern.ch/</u>

CDR presentation during welcome event this evening.

Paper copies can be requested at

<u>http://get-fcc-cdr.web.cern.ch</u>

Future Circular Collider Study

CMS

Large scale technical infrastructures Conceptual design study 2014 – 2018 Driven by international contributions Establish long-term liaisons with industry Collaborate on technology evolution (> 2025)