engineering & the future of accelerators @ CERN

Pushing LIMITS and boundaries in materials AND TECHNOLOGY

	St	Staff Fellows & MPA (excl. users)			Total	
Professional Category	No.	%	No.	%	No.	%
Research physicists	86	3.27	1.079	40.52	1,165	22.00
Scientific and engineering work	1,143	43.41	1,325	49.76	2,468	46.60
Technical work	890	33.80	147	5.52	1,037	19.58
Manual work	57	2.16	19	0.71	76	1.44
Prof. admin work	175	6.65	45	1.69	220	4.15
Office and admin work	280	10.63	46	1.73	326	6.16
Office work	2	0.08	2	0.08	4	0.08
Total	2,633	100	2,633	100	5,296	100

2017 CERN DATA

Scientific and Engineering Work

2,468 out of 5,296

46.60 % of CERN professionals

Research Physicists

1,165 out of 5,296

22 % of CERN professionals

Dark energy

Dark matter

Anti matter

Revolutionary engineering

revolutionary engineering

16 T

High-field
Magnets

FCC

Future Circular Collider (FCC)

Circumference: 90 -100 km

Energy: 100 TeV (pp) 90-350 GeV (e+e-)

Large Hadron Collider (LHC)
 Large Electron-Positron Collider (LEP)

Circumference: 27 km

Energy: 14 TeV (pp) 209 GeV (e+e-)

Tevatron

Circumference: 6.2 km

Energy: 2 TeV (pp)

Curriculum

Computing Radioprotection Mechanics Electromechanics **Engineering** Graphic design Finance Safety **Civil Engineering** Challenge Communication Technology **CERN Electronics** Fire brigade

Curriculum

- Depends on every country
- 10th 12th grades
- Different subjects

Agriculture	Fundamentals and Applications of Aquaculture and Food Processing in a Philippine Setting	AGRI
Computer Science	Data Structures and Algorithm	CS5
Engineering Science	Special Topics in Engineering	ENGG
Technology	Design and Make Technologies	TECH
Science, Technology, Engineering, and Mathematics (STEM) Research 2	Knowledge Integration, Application and ExtensionResearch for a Sustainable Development	RES2

Problems we could find:

- Lack of time
- Lack of materials and resources
- Lack of motivation of our students
- Lack of mathematical skills

Abstract concepts

Physical world

Abstract concepts vs. physical world

But in reality...

How could we implement engineering and physics concepts in classroom?

A hands-on activity:

- Check prior knowledge
- Calculate parameters
- Construct and test a prototype
- Take and analyze data
- Make modifications to improve it
- Make connections to engineering and physics

Some useful links

https://www.teachengineering.org/

http://www.discovere.org/

http://teachers.egfi-k12.org/

https://tryengineering.org/

https://nscl.msu.edu/public/index.html

The Future of Accelerators

2012 Discovery of Higgs boson

2013 Studies for higher energy accelerators

Why a bigger accelerator?

Find new heavier particles

Improving resolution

How is it going to look?

Key technologies

16 T

High-field Magnets

What can be done with future colliders?

THERE ARE FOUR
FUNDAMENTAL FORCES
BETWEEN PARTICLES:

(1) GRAVITY, WHICH
OBEYS THIS INVERSE
SQUARE LAW:

"Of these four forces, there's one we don't really understand."

"Is it the weak force or the strong--" "It's gravity."

Physics with Future Colliders

- The standard model is considered "complete", but there are still questions to be answered
- Future colliders may produce new particles which help us answer these questions

Physics with Future Colliders

LHC has a maximum beam energy of 14 TeV

FCC could have maximum beam energy of 100 TeV

This may reveal new particles!

What questions can we answer with future accelerators?

- What is dark matter?
- What is dark energy?
- Where is all the antimatter?

Albert A. Michelson 1852 - 1931

"The more important fundamental laws and facts of physical science have all been discovered..."

- Albert A. Michelson 1894

Should you go into physics today?

Should you go into physics today? Engineering

Should you go into physics today? Understanding how things work

Should you go into physics today? Unraveling the mysteries of the universe

What has been achieved in the last few years: Direct observation of a black hole

Artistic rendering

What has been achieved in the last few years: Measuring gravitational waves

What has been achieved in the last few years: Discovering the Higgs boson

Albert A. Michelson 1852 - 1931

I am sorry to say, but professor Albert Michelson was wrong.

We are now manufacturing Anti-Matter

At cern Geneva

We are building magnets that were thought impossible before

We are curing cancer

Anti-proton cancer treatment,
This is Not science fiction, this is really happening!

Physics is advancing now more than ever.

Join us and change the world!

