The Promise of Diffraction-Limited Spectrometers for PRV and Direct Planet Spectroscopy: From Palomar→Keck→TMT→Space

Charles Beichman, Gautam Vasisht, Stephanie Leifer (JPL, California institute of Technology),
Dimitri Mawet, Ricky Nilsson, Jason Fucik, Nem Jovanovic (Caltech),
Mike Fitzgerald (UCLA), Peter Plavchan (George Mason University)

EPRV-4, March 2019

Copyright 2019 JPL, California institute of Technology

Outline of Talk

- What makes Diffraction-Limited Spectrometers so great?
- What makes Diffraction-Limited Spectrometers so hard?
- What (else) are Diffraction-Limited Spectrometers good for?
- How do we stabilize Diffraction-Limited Spectrometers?
- What are ultimate applications of Diffraction-Limited Spectrometers?
- Where do we want to use Diffraction-Limited Spectrometers?

What Makes Diffraction Limited Spectrometers Great?

Resolution, R, of a spectrometer is given by R=2D_{grating} tan α /(D_{tel} θ _{slit}) Alternatively, grating size, D_{grating}, goes as D_{grating} =R (D_{tel} θ _{slit})/tan α /2

 \rightarrow For a given R, instrument size scales as $(D_{grating})^2 \sim (D_{tel} \theta_{slit})^2$

Seeing-limited spectrometers on large telescopes ($\theta_{\text{slit}} \sim 0.5$ ") scale as D_{tel} \rightarrow big, hard to stabilize thermally and mechanically \rightarrow very expensive

For a diffraction limited system, $\theta_{\text{slit}} = \lambda/D_{\text{tel}}$, and $D_{\text{grating}} = R \lambda/\tan \alpha/2$ so instrument optics scale as λ for a given R

Size of diffraction-limited spectrometer is independent of telescope size making them smaller^{*} and easier to stabilize → less expensive.

*Note to Chris Tinney: R~400,000 no problem!

Feeding diffraction limited spot into a Single Mode Fiber eliminates modal noise and effects of pointing jitter on Line Spread Function

Diffraction-Limited Spectrometers Are Compact

- CFHT/SPIROU
 - R=75,000 with 150 mm pupilwith 12x3 mm slices
- HET/HPF
 - R=50,000 with 200 mm pupil
- PALOMAR/KECK/TMT
 - R~100,000 with 25 mm pupil
 independent of telescope size

What makes Diffraction-Limited Spectrometers Hard?

- Feeding spectrometer with diffraction limited beam with high efficiency requires AO with high Strehl
 - Strehl > 50% at λ > J band (Palomar 3k; Burruss et al 2014)
 - Laser Guide Star boosts Strehl for fainter stars
 - Visible AO Strehl > 50% possible at 0.6 μ m (Close et al 2014; Males et al 2018)
- PIAA input beam raises coupling efficiency from 59%->87% relative to unapodized beam (Jovanovic et al 2017)
- Goal for overall optical efficiency: >5%

Optical Design for PAlomar Radial Velocity Instrument (PARVI*)

*Multum in PARTO or "Much in Little"

Total Orders: 75

Order Range: 120 – 194

Free Spectral Range: 6nm - 15nm

Spectral Range: 1000 nm - 2500 nm

Wavelength (nm)	Sampling (pixels)	Resoluti on
1110 (J)	1.92	127,942
1368 (J/H)	2.24	109,925
1790 (H)	2.82	87,544

PARVI Build-up in Lab

 Major components (Aluminum or Zerodur) in place with engineering grade R4 grating (Bach Engineering)

On-going cold testing with H2RG

On-sky July 2019. Routine ops

Continuum

Continuum

Trortabs 1550nm Laser

Trortabs 1550nm Laser

Charcoal Getter
Science Fiber / Cal
Lamp Fiber

Cryostat Cold Shield

Mylar Blanket

Passive Temp Senors Electrical Panel

Aluminum Optics Bench

Temp Senors/Heator Control Loop Electrical Panel

Optical Design for Keck/HISPEC and TMT/MODHIS

Total Orders: 75

Order Range: 120 - 194

Free Spectral Range: 6nm - 15nm Spectral Range: 1000 nm - 2500 nm

Wavelength (nm)	Sampling (pixels)	Resoluti on
1110 (Y/J)	2-3	196k
1368 (J/H)	2-3	123k
1790 (K)	2-3	91k

What are Diffraction-Limited Spectrometers Good for (PRV)?

- NIR PRV advantageous for late type (>M5) or for active stars (Reiners et al 2018)
 - Surveys of young stars for hot Jupiters (10s of m/s)
 - Surveys of late type M stars (≥M6) and transit followup (1 m/s)
 - Surveys of mature but active stars where lower NIR jitter may reach lower mass planets (1-10 m/s)
 - Transit host star in tight binaries
 - Brown dwarf binaries with LGS
- Vis & NIR spectra at R>150,000 can help mitigate jitter by resolving individual stellar lines (Dumusque et al; Lanza et al; Wise et al --- 2018)

How Do We Stabilize PRV Spectrometers

- In Stage-1:
 - EOM Laser Frequency Comb (LFC) with 12 GHz (0.1 nm) spacing tied to acetylene pump laser (Yi et al 2016) for <30 cm/s precision or a fiber laser comb for <10 cm/s precision (HPF implementation, Halverson 2014)
- In stage 2:
 - Octave spanning comb broadened with SiN waveguide enables f-2f stabilization
 - Heterodyne combination of f & 2f generates 1.58 GHz beat tied to Atomic Clock frequency standard (GPS)
 - Stabilization to <10⁻¹² (< mm/s)</p>

- Kerr Soliton microresonator generates LFC on a chip
- Tests at Keck at 1.5 µm (Suh et al 2018) and GIANO-B spectrometer at the Telecopio Nazionale Galileo (TNG) (Obrzud et al 2018)
- Operation from 0.8 to 2.4 μm

The Future: LFC's on a chip!

What Else are Diffraction-Limited Spectrometers Good For?

Direct high resolution spectroscopy with or without coronagraphy

- Turn hot Jupiters into SB2 binaries
- Determine stellar and exoplanet masses
- Map molecule distribution in directly imaged planets
- Measure planet spin (length of day)
- Make Doppler map for cloud dynamics, global circulation, winds, weather
- Determine composition, C/O ratio
- Reflected light using high dispersion spectroscopy + coronagraphy

Progression of capabilities from
 Palomar →LBTI/iLocator → TMT
 (MODHIS) will advance science from
 hot Jupiter → Earths orbiting M stars

What Are Ultimate Applications of Diffraction-Limited Spectrometers?

- Compact spectrometers for Visible PRV
 - Advanced AO can deliver >50% Strehl for<8 mag
 - Achieve very high resolution (R>150,000) to utilize numerous 4 m telescopes for intensive surveys

EarthFinder --- A NASA Probe Class Study (Plavchan, PI)

- Evaluate the *scientific rationale* for going to space:
 - What do you gain from space?
 - Bypass limits of Earth's atmosphere in visible & NIR (tellurics)
 - Use broad spectral grasp to "solve" stellar jitter?
 - Improve cadence to minimize day/month/year aliases
- Space telescope offers new paradigm for PRV science essential to achieving <10 cm/s long term precision
 - Wavelength coverage (UV to NIR) at R ~150,000
 - High observing cadence to minimize aliasing

EarthFinder: Taking PRV to Space

- Study brightest 50 targets for imaging missions
- 1.45 m telescope in Earth-trailing/L2 orbit
 - Visible Spectrometer: 0.4-0.96 μ m at R=170,000 (0.6/ λ)
 - Near-IR Spectrometers: 0.96-2.4 μ m at R=170,000 (1.6/ λ)
 - Small UV Spectrometer for MgII chromospheric activity: 0.28-0.38 μm
- No Telluric atmospheric effects ©
- Extreme Resolution and λ coverage to reduce jitter
 - R>150,000 & continuum normalization for line analysis
 - Vis-NIR color to isolate jitter from Doppler signals
- L2 Orbit for Instrument Stability
 - Line Spread Function from single mode fibers
 - mK thermal control for <10 cm/s measurement accur.
 - Micro-resonator LFC for 1 cm/s long term stability
- High cadence (70% of sky >180d; 30% CV) reduces aliasing

EarthFinder Yields HZ Earth Analogs

- Simulated yield from 5 year survey of 63 HabEx targets
 - Simulated planetary systems
 - Simulated space-cadence with EarthFinder field of regard
 - Perfect stellar activity correction
- → Excellent recovery of many systems with 10 cm/s signals!
- Strong ancillary science cases:
 - Asteroseismology
 - Water in the stars and BDs
 - UV spectroscopy from space
 - He I 1 μm direct detection
 - And more!

Where Do We Want To Put Diffraction-Limited Spectrometers?

Everywhere!

Backup

Single Measurement Precision at Palomar and Keck

Photon limited single measurement precision at Palomar/PARVI (J+H) and Keck/HISPEC (Honly) is at or below 1 m/s although atmosphere may limit to \sim 1-3 m/s depending on H₂O

EarthFinder Performance

Diffraction Limited
 Spectrometer in space eliminates or mitigates many instrumental problems relative to ground-based seeing limited instruments

Will The Earth's Atmosphere Limit RV Precision?

- Yes, if $\lambda > 0.8 \mu m$ necessary to correct stellar activity!
- Earth's atmosphere introduces RV errors of 3 cm/s in the blue, 10 cm/s in the red, & 1 m/s in the NIR

Wavelength Coverage Mitigates stellar Jitter

- Simultaneous RV color subtracts planet signal(s) yielding "clean" measure of chromatic activity!
- To zeroth order, activity RV α RV color, so planet signal is α RV Cx(RV color)
- Simple model using visible-NIR color shows 61% reduction in stellar activity using only a simple linear-scaling model

